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16.1 INTRODUCTION

Ostracods are small (~0.5–2 mm length) meio-
faunal Crustacea whose low-magnesium calcite 
(CaCO

3
) shells are preserved as microfossils in 

lacustrine, estuarine, and marine sediments. A 
total of approximately 65,000 ostracod species 
had been described as of 2005 (Ikeya et al., 2005) 
and, although estimates vary, there may be 
20,000 species living today (Rodriguez-Lazaro 
and Ruiz-Muñoz, 2012). Ostracods inhabit virtu-
ally all types of non-marine and marine aquatic 
environments, including intertidal and subtidal 
zones in coastal marshes, mudflats, estuaries, 
bays, and coral reef complexes. A few species 
even live in moist supratidal terrestrial habitats 
(Horne et al., 2004). Many species have physio-
logical limits on their survival and/or reproduc-
tion to specific temperature and salinity ranges, 
and most species are adapted to certain substrate 
types (i.e., mud, sand, submerged aquatic vege-
tation). Consequently, marginal marine ostra-
cods have been used for reconstructing changes 
in relative sea level (Cronin, 1987; Penney, 1987; 
De Deckker and Yokoyama, 2009) and they have 
been used in numerous studies of coastal zones, 
mostly in northern Europe, the Mediterranean, 
parts of North America, and the Indo-Pacific 
region (Boomer and Eisenhauer, 2002; Frenzel 
and Boomer, 2005).

This chapter discusses biological and ecologi-
cal attributes that make ostracods unique sea-
level indicators, distinct from other biological 
proxies, and provides examples where they have 
been applied to sea-level reconstruction. This 
focus is on the practical application of species’ 
ecology to paleo-sea-level reconstruction using 
assemblages (also called associations, biofacies) 
from coastal sediment records. Although lack of 
space prevents a discussion of ostracod shell 
chemistry, it is noteworthy that pioneering 

studies of magnesium/ calcium and strontium/
calcium ratios in marginal marine ostracods were 
first applied to document changes in regional sea 
level (De Deckker et al., 1988; see also Dettman 
and Dwyer, 2012; Holmes and De Deckker, 2012).

16.2 TAXONOMY

Correct taxonomic identification of marginal 
marine species is the foundation of any study of 
sea level using species’ ecology and faunal assem-
blages. The most useful introduction to the tax-
onomy of major ostracod groups is that of Horne 
et al. (2002); Ikeya et al. (2005) also provide a use-
ful review of taxonomic schemes for ostracods. 
Regarding higher taxonomic groups, ostracod 
biologists often use “soft-tissue” features (i.e., 
appendages, copulatory apparatus) to distinguish 
groups, but these are not typically preserved in 
sediments. In paleo-sea-level studies, ostracod 
specialists therefore identify genera and species 
from morphological features of their CaCO

3
 shells, 

notably species-specific patterns of sieve and 
radial pores, muscle scars, the calcified inner 
lamella and vestibule, hinge morphology along 
the dorsal margin, and carapace surface ornamen-
tation, among others (Fig.  16.1). This requires 
knowledge of the taxonomy and inter- and intra-
population morphological variability, which in 
some species can vary with environmental condi-
tions such as salinity, hydrochemistry, and 
temperature.

16.3 REPRODUCTION, GROWTH AND 
SHELL MORPHOLOGY

Ostracods reproduce through a variety of mecha-
nisms (cloning, parthenogenesis, brood care of 
eggs and/or young) but most species used in 
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sea-level studies are benthic in habitat, reproduce 
sexually, and either retain or deposit their eggs. 
With the exception of those taxa whose eggs are 
dispersed by birds (Cyprideis), or passively by 
floating marine algae, the lack of a mobile larval 
stage results in a high level of endemism for ostra-
cods inhabiting coastal zones.

Intra-specific shell morphological variability 
comes from ostracod ontogeny, sexual dimor-
phism, and valve asymmetry (Rodriguez-Lazaro 
and Ruiz-Muñoz, 2012). Ostracods grow in dis-
creet increments by molting (ecdysis) (Kesling, 
1951), usually 7–9 molt stages, such that fossil 
assemblages consist of both adult and juvenile 
specimens. Shells of adults and 3–4 pre-adult 
molt stages are often represented in sediment from 
the >125 micron size fraction used in 

many microfaunal analyses. Furthermore, sexual 
dimorphism in carapace size and shape and valve 
overlap (either the right or left valve is larger and/
or a different shape than the other) must be con-
sidered in taxonomic and ecological study of 
modern or fossil ostracods. Although shell mor-
phology (e.g., sieve pore morphology, noding, car-
apace ornamentation, etc.) and chemistry (stable 
isotopes, minor element ratios) are used for paleo-
salinity reconstruction, faunal assemblage analy-
sis (see the following section) is the most common 
approach for sea-level reconstruction. A useful 
online reference for further information on ostra-
code morphology is University College London’s 
website (http://www.ucl.ac.uk/GeolSci/micropal/
ostracod.html), and Cohen et al. (2007) provide a 
list of morphological terms for living ostracods.
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Fig. 16.1. Scanning electron photos of 
benthic ostracods Sarsicytheridea (top, 
internal view, right valve) from Late 
Pleistocene Champlain Sea, Quebec, 
Canada, and Loxoconcha (bottom, exter-
nal view, left valve) from the continental 
shelf off North Carolina, US. Morphological 
features used in genus and species identi-
fication are shown. For discussion of basic 
ostracod morphology and taxonomy see 
Horne et al. (2002) and Rodriguez-Lazaro 
and Ruiz-Muñoz (2012).
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16.4 PRESERVATION IN SEDIMENTS

Oceanographic and sedimentological processes 
affect the preservation of microfossil assemblages in 
sediments and potentially introduce biases, such as 
selective transport of juveniles or smaller species, 
mixing (time-averaging) of populations from several 
years or longer, and shell dissolution. Burrowing 
and bioturbation can also mix formerly distinct 
assemblages up to several centimeters in the sedi-
ment. The taphonomy of fossil ostracod assemblages 
– that is, the degree to which fossil assemblages rep-
resent life assemblages – involves the assessment of 
these biases (Lord et al., 2012). In practice, strati-
graphic intervals covering a freshwater to marine 
transition caused by sea-level rise often contain a 
sequence characterized by non-marine assemblages, 
“mixed” assemblages (including both non-marine 
and marine species), and brackish to marine assem-
blages with no non-marine species. Mixing of eco-
logically distinct assemblages in a freshwater to 
marine transition zone is influenced by the rate of 
sea-level rise, sources and rates of clastic sediment 
input, geomorphology of coastal habitats, tidal 
range, and other factors. In addition to understand-
ing species’ ecology, it is necessary to understand 
local coastal processes to interpret patterns and rates 
of sea-level change from sediment records.

Dissolution of ostracod calcitic shells can alter 
the original biocoenoses (life assemblages) either in 
situ (i.e., within the sediment), or after taking sedi-
ment cores but before laboratory processing of sedi-
ment. This problem applies especially to tidal 
marsh and estuarine environments. While in situ 
dissolution in sediments is difficult to assess, rapid 
refrigeration of sediment cores (usually at 2–4 °C) 
can inhibit dissolution; laboratory processing 
(washing/sieving) of marsh sediments as soon as 
possible after taking sediment cores is preferred and 
should eliminate or minimize dissolution artifacts.

Biological characteristics discussed above distin-
guish ostracods from other groups, such as diatoms 
and foraminifera, as valuable tools in paleo-sea-
level studies (see De Deckker, 2002). For example, 
the preservation of a large number of carapaces 
(two valves still articulated) rather than disarticu-
lated valves depends on morphological factors 
(dorsal hinge structure, ligament, adductor mus-
cles), as well as environmental conditions (waves, 
currents, sedimentary processes). As a general rule, 
preservation of carapaces is more common in low-
energy environments when little or no transport 
has occurred. Population structure – the relative 

proportions of adults and juveniles of a species – 
can be an important element in sea-level research, 
especially in the reconstruction of rapid sea-level 
rise over centuries or less. In the idealized case 
where an individual with 8 molt stages reached 
adulthood, the individual would contribute 14 
juvenile valves (two valves, disarticulated during 
ecdysis, for each juvenile molt) and either 2 adult 
valves or 1 adult carapace to a sediment sample 
(assuming all size fractions were studied). In the 
case of high juvenile mortality, there will be fewer 
adults than juveniles and perhaps articulated juve-
nile carapaces that died before reaching adulthood. 
In any case, knowing the population structure of 
key species tells the researcher whether or not mix-
ing of assemblages from different habitats occurred.

16.5 BIOGEOGRAPHY AND ECOLOGY

At large spatial scales such as shallow marine bio-
geographic provinces, ocean temperature required 
for species’ reproduction and/or survival is a major 
factor controlling the distribution of genera and 
species on continental shelves (Hazel, 1970; Cronin 
and Dowsett, 1990; Ikeya and Cronin, 1993; Wood 
et al., 1993). Conversely, at regional and local spa-
tial scales along coasts, ecological and habitat-
related factors controlling the abundance and 
distribution of species are salinity (including daily, 
seasonal and interannual salinity variability), sub-
strate, and other resources such as food. Most 
coastal regions exhibit a high degree of habitat het-
erogeneity and strong, often fluctuating, environ-
mental gradients. Coastal ostracods from Europe, 
the Arctic, North America, and Asia shown in 
Figures 16.2 and 16.3 exemplify the wide range of 
species and morphological diversity. In addition, 
even when two or more species co-occur in the 
same salinity zone within a bay, lagoon, or other 
aquatic system, they can have distinct, seasonally 
varying life cycles (King and Kornicker, 1970; 
Horne, 1983), or habitat preferences, such as sand 
versus phytal dwelling (Kamiya, 1988).

The vertical resolution for paleo-sea-level esti-
mates derived from microfossil assemblages is often 
based on species’ preferred depth ranges or habitats 
in relationship to high or mean tide levels. 
Establishing an “error bar” for past sea levels is a 
critical aspect of paleoecological analyses of all fos-
sil groups used in sea-level studies (benthic 
foraminifera, diatoms, corals, and ostracods; Barlow 
et al., 2013). Typically, preferred depth ranges of 
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coastal ostracod species are less than 10 m water 
depth (e.g., Yasuhara and Seto, 2006), but many 
tidal marsh species are dominant in water less than 
a few meters deep, in some cases due to substrate 
preferences. For example the depth limits of phytal 
species, such as those in the genus Loxoconcha, are 
limited by light penetration (usually a few meters in 
estuaries) which controls seasonal growth of the 
host vegetation (the sea grass Zostera; Kamiya, 
1988; Vann et al., 2004). Macrobenthic algae also 
host ostracod species living within a few meters of 
sea level, especially in subtropical and tropical 
regions (e.g., Triantaphyllou et al., 2005).

In sum, understanding the complex ecology of 
coastal ostracods requires field studies of the dis-
tribution and abundance of living populations 
across salinity gradients and in relation to sub-
strate, submerged aquatic vegetation, and tidal 
patterns (Boomer, 1998).

16.6 QUANTITATIVE FAUNAL 
ANALYSES

Due to high endemism and habitat heterogeneity 
discussed above, species diversity of non-marine, 
brackish, and marine species can be quite high for 

any coastal region. A few examples illustrate this 
point: 105 species in lagoon and carbonate plat-
form environments off Belize (Teeter, 1975); 129 
species in the Baltic Sea (Frenzel et al., 2010); 35 
species along the mangrove coast of southwest 
Florida (Keyser, 1975a, 1975b); 35–39 species in 
Texas bays and lagoons (King and Kornicker, 
1970; Garbett and Maddocks, 1979); 81 species in 
Osaka Bay, Japan (Yasuhara et al., 2004); and about 
30 species in Chesapeake Bay (Tressler and Smith, 
1948; Cronin and Vann, 2003).

High diversity and complex niche-partitioning 
among species has led ostracod workers to apply 
multivariate faunal analyses such as transfer func-
tions, modern analog technique (MAT), cluster 
analyses, detrended correspondence analysis 
(DCA) (Viehberg and Mesquita-Joanes, 2012) to 
characterize modern and fossil ostracode assem-
blages. These methods involve analysis of species’ 
relative frequencies (RF, percent abundance of 
each species out of the total ostracod assemblage) 
in relation to environmental parameters. Modern 
assemblages are then applied to analysis of fossil 
assemblage composition from sediments. A total 
of 300 individuals per sample is a standard used 
in quantitative microfaunal analysis, but identify-
ing statistically significant temporal assemblage 
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Fig. 16.2. Scanning electron micrographs 
of ostracode fossils from core HIR94-3 
(Japan). Scale bar: 1 mm. All specimens are 
lateral views of left valves. (a) Bicornucythere 
bisanensis, adult, female, sample no. H36. 
(b) Bicurnucythere bisanensis, A-1 instar, 
sample no. H36. (c) Bicurnucythere sp., A-1 
instar, sample no. H52. (d) Bicornucythere 
sp., adult, female, sample no. H52. (e) 
Cytheromorpha acupunctata, adult, male, 
sample no. H49. (f) Spinileberis quadriacu-
leata adult, male, sample no. H52. Source: 
Photograph by M. Yasuhara. Reproduced 
with permission.
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changes can be accomplished with smaller sam-
ple sizes if there are large temporal changes in RFs 
of dominant, ecologically sensitive species (Buzas, 
1990). In some cases, temporal patterns in a few 
dominant species can provide convincing evi-
dence for sea-level change.

16.7 CASE STUDIES

Micropaleontological studies have used ostra-
cods preserved in marine and brackish water 
sediments to infer changes in sea-level changes 

during the Phanerozoic over timescales ranging 
from 103 to 107 years. Cyclostratigraphy of orbital-
scale sea-level oscillations, for example, uses 
marginal marine ostracods as proxies for sea-
level positions in Cretaceous (Cenomanian–
Turonian) sediments of the Colorado Plateau 
(Tibert et al., 2003), Messinian (5.4–5.3 Ma) sedi-
ments of the Adriatic (Cosentino et al., 2006, 
2011), and Quaternary deposits in the eastern US 
(Cronin et al., 1981).

In the majority of cases, however, ostracods 
have been applied to late Quaternary (including 
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Fig. 16.3. Scanning electron micrographs of ostracode fossils. All external view except (a). Scale bar: 100 μm. (a) Candona sp 
internal view, right valve. Source: Rayburn et al., 2011. Reproduced with permission of Elsevier; (b) H. sorbyana, external view, 
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Holocene) sea-level reconstruction, including the 
following examples (Table 16.1): 

 ● Rapid sea-level rise during early deglaciation 
(post-19.4 ka cal BP) in Bonaparte Gulf, Australia 
(De Deckker and Yokoyama, 2009).

 ● Holocene and Pleistocene sea-level changes in 
the British Isles (Athersuch et al., 1989; Boomer 
and Godwin, 1993).

 ● The Younger Dryas-age (~13 ka cal BP) 
Champlain Sea marine transgression (Rayburn 
et al., 2011).

 ● Rapid early Holocene sea-level rise at the end of 
the last deglaciation (Irizuki et al., 2001; Yasuhara 
et al., 2004; Yasuhara and Seto, 2006; Cronin et al., 
2007a; Viehberg et al., 2008; Yasuhara, 2008).

 ● Abrupt Holocene flooding of the Black Sea 
(Boomer et al., 2010) and Tampa Bay (Cronin 
et al., 2007b).

 ● Mid- to late Holocene sea-level changes in the 
Mediterranean (Primavera et al., 2011).

 ● Small but significant late Holocene sea-level 
oscillations (Boomer, 1993; Teeter, 1995; Boomer 
et al., 2009; Mazzini et al., 2011). 

One common feature in these studies is that 
ostracod microfaunal analyses were part of 
broader, multidisciplinary assessments of sea 
level that used other proxy methods (foraminifera, 
diatoms, palynology, geochemistry), lithostratig-
raphy, geochronology, and/or geophysical analy-
ses of isostatic, tectonic, or other processes. It is 

therefore fair to say that, given their suitability for 
paleo-sea-level reconstruction based on their 
 ecology and preservation in coastal sediments, 
ostracods hold great promise in future studies of 
past sea-level changes.
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