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A B S T R A C T

Computational analysis applicability to paleontological images ranges from the study of the evolution of ani-
mals, plants and microorganisms to the habitat simulation of living beings from a specific epoch. It can also be
applied in several niches, e.g. oil exploration, where several factors can be analyzed in order to minimize costs
related to oil extraction. One specific factor is the characterization of the environment to be explored. This
analysis can occur in several ways: use of probes, samples extraction, correlation with logs of other drilling wells
and so on. During the samples extraction phase, the Computed Tomography (CT) is of extreme importance, since
it preserves the sample and makes it available for several analyses. Based on 3D images generated by CT,
analyses and simulations can be performed, and processes currently performed manually and exhaustively, can
be automated. In this work, we propose and validate a method for fully automated microfossil identification and
segmentation. A pipeline is proposed that begins with scanning and ends with the microfossil segmentation
process. For the microfossil segmentation, a Deep Learning approach was developed, which resulted in a high
rate of correct microfossil segmentation (98% IOU). The validation was performed both through an automated
quantitative analysis and visual inspection. The study was performed on a limited dataset, but the results provide
evidence that our approach has potential to be generalized to other carbonatic rock substrates. To the extent of
the authors' knowledge, this paper presents the first fully annotated MicroCT acquired microfossils dataset made
publicly available.

1. Introduction

The applicability of computational image analysis to paleontolo-
gical data encompasses the possibility of identifying, reconstructing and
visualizing microfossils in rock samples not recovered by conventional
extraction methodologies. It can also allow microfossils to be tax-
onomically identified even before physical extraction from the rock
sample. In addition, it enables the verification of the microfossil posi-
tion in a given sedimentary stratum, which can help in taxonomic in-
ference, whereas detailed positional information is lost in the tradi-
tional preparation method (Kachovich et al., 2019). Computational
analysis of samples can be applied in several niches, e.g. oil exploration,
paleoenvironment reconstituition and geologic modeling.

Diagenetic processes can significantly alter the recovery of different

microfossils. In this work, the focus was on specimens of foraminifera,
widely used in biostratigraphic and paleoenvironmental interpreta-
tions. The foraminifera are unicellular organisms, consisting of a car-
bonate and/or agglutinat carapace, and have a benthic (inhabiting the
sediment and water interface) and planktonic (inhabiting the super-
ficial portion of the water column in marine environments) life habit
(Boudagher-Fadel, 2015).

In the oil exploration field, there are many factors to be taken into
consideration in order to minimize oil prospection costs. One of these
factors is the environmental condition, which can be analyzed in mul-
tiple ways: use of probes, extraction of samples for petrophysical
components evaluation and correlation with logs from other drilling
wells.

In the area of samples extraction it is possible to perform different
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analyses on a given sample. For this purpose, the Computed
Tomography (CT) plays a central role. More specifically, samples are
analyzed with X-ray micro-tomography (MicroCT), which is a radio-
graphic imaging technique that produces 3D images of the material's
internal structure with a spatial resolution of around 1 μm (Landis and
Keane, 2010). MicroCT is of significance because it preserves the
sample and makes it available for different studies. Based on MicroCT
generated data volumes, various 3D data analyses and simulations can
be performed and several analysis processes can be computationally
carried out and automated using state-of-the-art Computer Vision (CV)
techniques. These processes are currently performed manually and in a
time-consuming manner. One of these processes that can undergo au-
tomation through CV is the microfossils identification and extraction in
rock samples, which is the focus of this study.

1.1. Objective and strategy

In this work, we propose a CV workflow composed of computational
methods that starts with the MicroCT scanning process of a sample and
ends with the fully automated identification and extraction of in-
dividual microfossils. The main research question we try to answer is: Is
it possible to fully automatically and reliably identify microfossils in car-
bonatic rock samples?

The novelty in our work is the use of Deep Learning Convolutional
Neural Network (CNN) approaches for the identification and 3D seg-
mentation of microfossils directly in their deposition place. Our ap-
proach works directly on MicroCT data gained from carbonate rocks,
without the need of any preparation or physical extraction. For this
purpose we developed an identification and segmentation strategy that
employs a special category of CNN models, namely Semantic
Segmentation (SS) neural networks and extends this model in order to
be able to process whole 3D MicroCT sample volumes. In order to
identify the best model, we extend, train, test and compare a series of
different state-of-the-art SS models. To validate our approach we em-
ploy a validation strategy where we compare our results to ground
truths that were manually generated by experienced micro-
paleontologists employing state-of-the-art automated image segmenta-
tion validation algorithms.

The paper is organized as follows: Section 2 presents a brief over-
view of computer methods in paleontology, arriving on presently em-
ployed methods. Section 3 presents the material and methods employed
in our experiments. Section 4 describes the performed experiments and
the obtained results. A discussion of the results, conclusions and future
works is provided in Section 5.

2. State of the art

Paleontology is a well-established science and its methodological
intersection with the computational field started to grow in the 1990's.
In the late 1980's, most main paleontology journals still showed an ir-
regular presence of computational methods: some journal issues con-
tained one article describing some computational method application,
others presented 2 or 3 articles and very few offered a larger number of
them (Tipper, 1991). In the majority of journals and books the insertion
of computational methods in the paleontology field still looked uneven.

In the late 1990s, however, with the widespread use of medical CT,
a growth in research activities employing tomographic images occurred
(Tipper, 1991). This boosted the development of specialized software
applications such as: DRISHTI (Limaye, 2012), IMAGEJ (Rueden et al.,
2017), AVIZO1 and so on. These specialized tools helped change how
researchers deal with specific problems in several fields, including
geology and paleontology, frequently with applications to oil and gas
exploration. The applicability of the set of tools and techniques that

came to be called Virtual Paleontology (VP) range from animal, plant
and microorganisms evolution analysis all the way to virtual re-
construction of a specific extinct environment (Sutton et al., 2014).

On the other side, the application of microfossil study to the oil
prospection area had its first appearance in 1890 in Poland (Singh,
2008), but it was in the USA, in 1920, with the use of microfossils to
identify the age of samples extracted from drilling rigs, that a bigger
advance in the development of the field of Applied Micropaleontology
was attained (Molina, 2004).

In the last decade multiple research works contributed to improve
the micropaleontology field. The latest efforts aim at the use of VP
associated with CNNs in order to identify microfossils (Ge et al., 2017).
With this in mind, our research is focusing on pursuing techniques that
can identify microfossils on their deposition place, i.e., without the
need of previous physical isolation. For this purpose we research some
CV fields such as 3D segmentation applied to tomographic image and
3D object recognition, in order to apply them to microfossil identifi-
cation.

In the next subsections we summarize the results of the systematic
literature reviews (SLR) we performed in order to identify state-of-the-
art methods and procedures that potentially could be used in micro-
fossil image studies. These reviews followed the approach originally
proposed by (Kitchenham, 2004) for SLRs in Computer Sciences, where
first we defined a research question: Is it possible to fully automatically
and reliably identify microfossils in carbonatic rock samples?. This broad
question, in order to be more manageable, was split into 2 topics, each
of which was explored in depth in a separate SLR:

• Analysis of 3D segmentation methods applied to tomographic
images, which could possibly be used to segment microfossils
(Carvalho et al., 2018);

• Analysis of methods used for 3D object recognition in a general
context, aiming to evaluate which methods could be applied to the
microfossils field (Carvalho and von Wangenheim, 2019).

The results of these two SLRs will be briefly summarized below.
Since a detailed description would exceed the scope of this paper, we
refer to the referenced SLRs for more details.

2.1. 3D segmentation applied to tomographic images and 3D object
recognition

An initial analysis of image processing methods employed in the
fossil identification area showed difficulty in finding any works that
explore microfossils. So we generalized our search for methods in other
similar areas. We started by performing a systematic literature review
on 3D segmentation methods applied to tomographic images (Carvalho
et al., 2018). Several works were analyzed which comprehended a vast
group of segmentation methods. In our review, it was noticed a ten-
dency on the use of 3D segmentation methods based on models and
region growing. However, its use for fossil/microfossil segmentation
was not noticed in the literature.

We also analyzed the field of 3D object recognition employing the
same SLR methodology (Carvalho and von Wangenheim, 2019). In this
SLR for 3D object recognition we could identify two general pipelines.
Both pipelines start with the data acquisition, which can basically vary
between 3D data (MRI, CT) or 2D data (RGB and RGBD cameras); pre-
processing, where methods for artifact removal, image enhancement
and image simplification are applied; and data representation, wherein
several authors proposed a varying amount of different object re-
presentations. Then, it comes the stage where both pipelines differ: In
the first pipeline, the data representation stage is used to describe and
storage the object representation chosen, which is later used for simi-
larity calculation and object identification; In the second pipeline, the
data representation is employed for training a specific recognition ar-
chitecture, such as a CNN, which is afterwards used for other objects1 https://www.fei.com/software/avizo3d/%C2%A0
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recognition. Despite having found two general approaches for 3D object
recognition, we could not identify, in our review, the application of
these approaches directly on microfossil segmentation.

2.2. Deep learning, object recognition and paleontology

The 3D object recognition area has, in the last few years, experi-
enced a growth boosted by the increased availability of new algorithms
and models, 3D data and the popularization of a varied palette of 3D
sensors. Methods developed in this area find application in a wide range
of sectors, from the field of robotics to the security and surveillance
domain. The general tendency in this area has been the use of Deep
Learning (DL) techniques.

DL is a form of machine learning that enables computers to learn
from experience and understand the world in terms of a hierarchy of
concepts (Goodfellow et al., 2016). DL employs very deep CNNs, with
neural networks that sometimes consist of more than 100 layers, in
contrast to the Artificial Neural Networks (ANNs) employed between
the 1980's and 2000's, that typically employed only three layers. One
key concept here is the Convolutional Layer (CL), a feature extraction
structure, first presented in (Lecun et al., 1998), that allows the hier-
archical learning and representation of complex knowledge. Because DL
CNNs gather knowledge from examples, there is no need for a human
computer operator to formally specify all the knowledge that the
computer needs. The capacity to represent a hierarchy of concepts in a
network dozens of CLs deep allows a DL CNN to learn complicated
concepts by building them out of simpler ones; a graph of these hier-
archies would be many layers deep (Goodfellow et al., 2016).

One work that employs DL for object recognition is the 3D Object
Recognition with Deep Belief Nets approach (Nair and Hinton, 2009),
where a network of symmetrically connected neuron-like units, that
performs stochastic decisions about whether to be on or off, is pre-
sented. In (Socher et al., 2012), a model based on the combination of
convolutional and recursive neural networks for the feature learning
and classification in RGB-D images is shown. Another DL approach is
presented in (Yu et al., 2013), where a robotic vision-based system,
which can not only recognize different objects but also estimate their
pose through the Max-pooling Convolutional Neural Network (MPCNN)
model is introduced. Similarly, the studies presented in (Liang et al.,
2014) and (Xia et al., 2015) also shown DL approaches focusing in
object recognition. Lastly, in (Xu et al., 2016) it is introduced an effi-
cient 3D object volumetric representation which requires much less
memory than a normal volumetric representation. None of these ap-
proaches tackles the problem of identification of fossils embedded in
rocks. However, these works give an input about methods used in
cluttered environments, which is one of the problems that emerged
with rock embedded microfossil analysis.

We also performed a search for automatic methods for micro-or-
ganisms identification, where we found some research works performed
during the past decades (Liu et al., 1994), (Culverhouse et al., 1996),
(Beaufort and Dollfus, 2004). The goal in those studies was to reduce
time and cost from the identification process and improve the classifi-
cation reproducibility. Several methods for automatic marine micro-
fossils classification where analyzed: image features (morphology,
texture and intensity) provided by image processing methods have been
combined with artificial neural network (Hibbett, 2009) (Schulze et al.,
2013), statistical (Culverhouse et al., 1996) or rule-based on classifiers
(Yu et al., 1996). Other works employed directly the entire image
(Francus, 2007) or used a combination of image and morphology
(Barbarin, 2014) with CNNs. More recent approaches are presented in
the following works: in (Charles, 2011), the author proposes to segment
the foreground particles in the image and to identify those containing a
single complete elliptic palynomorph. To do so, he employs trained
classifiers to distinguish between regions containing a single palyno-
morph and one containing other materials; in (Bueno et al., 2017), a
method to deal with automatic taxa identification based on machine

learning methods aiming to automatically classify diatoms is presented;
in (Marchant et al., 2019), the authors applied CNNS for classification
of down-core foraminifera; in (Mitra et al., 2019), a convolutional
neural network is used to identify six species of extant planktic for-
aminifera and to distinguish those from other taxa; in (Hsiang et al.,
2019), a planktonic foraminifera image set is built, using several expert
inputs, and then employed a CNN-based image classification (VGG
network), comparing their classification approach results against
human performed classification. However, most of those works perform
a classification analysis without preserving the microfossils deposition
place. This is one aspect that our work addresses by performing a SS in
the complete volume sample, thus preserving both the deposition place
and the microfossil information.

3. Material and methods

This section describes our datasets and the CV approach we devel-
oped for fully automated microfossil identification and segmentation in
carbonatic rock samples.

3.1. Material

In this work two datasets were employed: a scanned carbonatic rock
sample obtained from a drilling rig probe and a set of manually isolated
microfossil specimens that were obtained from the same sample. The
sample was collected at the Sergipe-Alagoas Basin (Brazil) Holocene
sediments (Fig. 1):

• The carbonatic rock sample was used as the material for developing
our CV approach. The MicroCT scanner used to digitise the sample is
a Versa XRM-500 (ZEISS/XRadia) with the following specifications:
best resolution (pixel size) 0.7μm, voltage 30–160 kV, power
2–10 W, CCD cameras 2048 × 2048 pixel, optical lenses 0.4×, 4×,
10×, 20× and 40×, a set of 12 filters for beam hardening cor-
rection, maximum sample mass capacity 15 kg and sample size limit
(diameter / height) 80/300 mm. The sample acquisition parameters
were: Spatial resolution 1.08 mm, image size 956x1004x983, no
filtering for beam correction hardening, 10× optical lens, 30 kV /
2 W, angular step 0.255 (1600 projections) and exposure time 11 s.
Fig. 2 shows the rock sample and an excerpt of one slice of its di-
gitized result.

• The set of manually isolated microfossil specimens, extracted from the
carbonatic rock sample described above, was used in this work for
illustration purposes and as a guide in order to allow us to know
how the specimens in the rock sample would look like after being
properly cleaned and isolated. These microfossils were prepared in
the laboratory, following specific precautions so that there were no
chemical and/or mechanical changes: (i) the sediment was first
immersed in deionized water for approximately 24 h, aiming the
chemical disaggregation; (ii) then, it was washed with running
water in a 63 μm sieve; (iii) next, the material was dried at 40°C for
approximately 48 h. After drying the samples, the main re-
presentative microfossils in the sample were selected with the help
of a magnifying glass. In this work, the microfossils specimens were
stamped with the help of a multidimensional acquisition with the
Zeiss Discovery V20 stereoscope (Z-stak mode in AxioVision 4.8
software). Fig. 3 presents these microfossils.

The analyzed sample contains a wide variety of specimens from
different species of microfossils. In our analysis, it was considered 14
species among the 4600 specimens found in the sample. The complete
dataset, containing the original MicroCT data and the manually seg-
mented images, annotated by specialists, are available at: http://
www.lapix.ufsc.br/microfossil-segmentation
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3.2. Methods

The CV approach presented here is intended to be embedded into a
broader workflow. Fig. 4 presents a general overview of this workflow.

3.2.1. Non-CNN Computer Vision Methods
A prospective search of CV methods for the microfossils segmenta-

tion was completed before investigating the use of CNNs. The starting
point was to perform a series of experiments using non-CNN, i.e. con-
ventional CV methods for the segmentation of the MicroCT volume.

An extensive list of conventional CV algorithms was analyzed
searching for the ones that could potentially generate satisfactory

results. The following classical segmentation algorithms were selected:
active contours (Kass et al., 1988), simple threshold and threshold with
OTSU (Otsu, 1979) - all taking into account the complete tomographic
volume. In order to find the best possible parameters for each seg-
mentation algorithm, we performed a broad parameter values search
running the algorithms with varied parameter sets. For the active
contour algorithm, in order to find the best parameter set, we employed
a genetic algorithm to search through possible input parameters. For
this purpose we considered 5 input parameters: Number of steps,
Sigma, Alpha, Smoothing and Theta. Those 5 parameters, their value
variation and the results found are summarized in the Table 1.

The results of these conventional CV algorithms were initially

Fig. 1. Sergipe Basin drill section position marked with a red cross. The sample was collected at a depth of approximately 2500 m below the sea floor.The map was
generated with the QGIS software (https://qgis.org/en/site/) associated with the geographic coordinates from the place where the samples where collected. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Analyzed rock sample (A) and one of its microtomography 2D sections (B).
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analyzed through visual inspection. For the conventional CV methods
that presented the best results in the visual inspection, we subsequently
analyzed its results quantitatively employing the method described in
the evaluation metrics section.

3.2.2. CNN-based Segmentation Methods
In the 3D object identification and segmentation field, the most

successfully and commonly used SS models in the last years have been
the UNET and its variations. The UNET architecture was presented in
(Ronneberger et al., 2015), where the authors show its use for medical
image segmentation. UNETs provide a general framework that can be

Fig. 3. Analyzed foraminifera taxa. Planktonic Foraminifera: 1) Globogerinoides ruber; 2a-b) Candeina nitida; 3) Orbulina universa; 4) Trilobatus sacculifer; 5) Trilobatus
trilobus; 6a-b) Globorotalia truncatulinoides. Benthic foraminifera: 1) Bulinina; 2a-c) Bolivinita; 3a-c) Cibicidoides; 4) Laticarinina; 5) Uvigerina; 6) Sphaeroidina; 7)
Siphonaperta; 8) Quinqueloculina.

L.E. Carvalho, et al. Marine Micropaleontology 158 (2020) 101890

5



parameterized with a specific image classification CNN model. The
UNET then employs two slightly modified instances of this CNN, an
encoder and a decoder, one for image recognition and another, employed
in reverse mode, for the segment mask generation (Badrinarayanan
et al., 2017): it uses the encoder to map raw inputs to feature re-
presentations and the decoder to take this feature representation as
input, process it to make its decision and produce an output. As the
UNET produces state-of-the-art semantic segmentation we chose it as
our starting point.

We initially employed the UNET model associated with a ResNet34
(He et al., 2016) as our initial structure. We then extended this ap-
proach through several state-of-the-art improvements, such as: nearest
neighbour interpolation and pixel shuffling (Shi et al., 2016), Leaky
Relu (Xu et al., 2015) for activation function, batchnorm (Bjorck et al.,
2018) for batch normalization and some efficient ways to set hyper-
parameters inspired in (Smith, 2018). For this purpose we employed the

fastai2 implementations of these improvements. Fastai is a high-level
CNN framework implemented on top of the lower-level Pytorch3 CNN
framwework.

3.2.2.1. Training speedup. The MicroCT data posed a challenge: the
memory requirements imposed by both the dataset size and the UNET
architecture would strongly limit the batch size of our training set. In
order to overcome this limitation and be able to work initially with
larger batch sizes and train the network at a faster pace, we employed a
step-wise progressive improving image resolution training strategy. For this
purpose we performed the training in three cycles: we started our
transfer learning with the dataset at 1/4 of the original MicroCT image
resolution; trained the DL model; re-sized the dataset to 1/2 of the

Fig. 4. General workflow. Modified from (Rakhlin et al., 2018).

Table 1
Table summarizing the results of our search for the best active contour algorithm parameters.

Input parameter Description

Number of steps For the cases analyzed keeping the same value for the others parameters, the number of steps didn't interfere in the final results. Suggested: keep the number of
steps fixed in 100.

Sigma As sigma increases, it restricts the number of contours. Suggested: vary from 0 to 3.
Alpha As Alpha increases, the contours are lost, when keeping the other parameter values fixed. However, it can interact with the increase in Sigma, making it

possible to use Alpha at higher values. Suggested: Vary between 500 and 1000 according to the sigma parameter used.
Smoothing With this value set in 1 the borders lose some of their representativeness. From the range 0 to 0.5, no major change was noticed. Suggested: Start from 0.5

increasing with steps of 0.1 until it reaches 1.
Theta When starting from 0 varying with steps of 10 and going up to 100 it was found that in the initial values, i.e., 0 to 15, the amount of edges is small. On the other

hand, if the value is above 40–45, depending on the other parameters, the contours are totally lost. Suggested: Vary with steps of 5 starting at 15 going up to
40.

2 https://www.fast.ai/
3 https://pytorch.org/
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Fig. 5. Progressive image resolution re-sizing approach. Modified from (Rakhlin et al., 2018).
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original resolution; trained again and after that we employed the full CT
volume resolution for a final fine tuning training cycle. The outline of
this strategy was originally presented in (Howard, 2019). Fig. 5 shows
our interpretation of the training workflow based on the progressive
image resolution re-sizing approach.

Another strategy for fine-tuning a model is the Differential Learning
Rates (DLR) strategy, also presented in (Howard, 2019). This approach
for multiple, layer-specific learning rates as the layers get deeper, is
justified by the following rationale: When performing transfer learning
followed by fine tuning, in the first layers the pre-trained model being
adapted will learn generic low level features from the new dataset being
used in the transfer learning. These low level features are very probably
similar to those of the original dataset, regardless of the image context.
Therefore, there is no the necessity of employing high learning rates at
these first layers. However, as information gets deeper into the archi-
tecture, the feature combinations become more complex and dataset-
specific, and are more directly connected to the application context.
Accordingly, higher learning rates in deeper layers are desirable in
order to allow the network to better adapt to context-specific features.

3.2.3. Evaluation metrics
We evaluated each segmentation method comparing our results to

the ground truths generated by micropaleontologists using the
Intersection Over Union (IOU) score (Rahman and Wang, 2016), which
quantifies similarity between finite sample sets, and is defined as the
size of the intersection divided by the size of the union of the sample
sets. The predicted labels were evaluated against three ground truths
generated manually by specialists.

4. Results

This section presents the obtained results of the different algorithms
and CNN models we tested.

4.1. Conventional CV algorithms

The best results under the conventional CV algorithms were
achieved with the active contours method. For this method we obtained
an IOU score of 20%. The obtained active contour segmentation result
is shown in Fig. 6.

The obtained results show that conventional CV methods may not
be suitable for the task of microfossil segmentation in rock samples.

4.2. CNN-based Semantic Segmentation

For our initial tests with SS CNN models, we started with the fol-
lowing structure: UNET associated with ResNet34 and the binary cross

entropy as its loss function, a carbonatic rock sample with several mi-
crofossil specimens, scanned with the MicroCT previously described
resulting in a total of 1000 slices. We employed an Intel Core i7–7700
CPU3.60GHz, 32GB memory computer and an NVIDIA GeForce GTX
1080 Ti 11GB GPU.

With this initial structure, our first experiment used only the mi-
crofossil annotation, performing a binary classification between mi-
crofossil or everything else. To improve initial results some strategies
such as data augmentation and transfer learning were applied, aiming
to minimize the effect of having a small dataset. The following data
augmentation techniques were used: brightness and contrast variations,
random crop, flip, perspective warp, resize, rotate, symmetric warp and
zoom). However, the obtained IOU coefficient, used for the results
evaluation, stopped in 40–45%.

Trying to improve the results, we increased the number of classes to
four, dividing the class previously named as “everything else” into the
following: porous space, rock and background. With this number of
classes, the obtained IOU value increased from 40 to 45% to 75–76%
and stopped. One problem with this approach is the data balance (Zhu
et al., 2018), i.e., the existence in the samples of more annotations from
the rock class in comparison with the microfossils. Fig. 7 shows the
result obtained after marking and training for the 4 classes setup for a
selected slice.

Still using the 4-classes approach, we adjusted the hyper-parameters
and applied a few performance-enhancing strategies (Xie et al., 2018),
such as the step-wise progressive improving image resolution training
strategy and the DLR, and explored the batch size in order to obtain a
98% IOU. The microfossil GT and its resulting segmentation with this
improved IOU is shown in Fig. 8.

Our experiments resulted in an experimental environment, where
we employed the UNET as base model associated with other models in
the decoder part (Restnet18, ResNet34, ResNet50, ResNet101), the
Cross entropy as loss function and IOU for quality assessment. Table 2
shows the IOU value obtained for each method and Fig. 9 shows the
original image, its GT and the prediction results for all the architectures
we tested.

After the segmentation we applied the predicted masks, generated
by ResNet34, to the original image. The result of this process is the
identification of several microfossils. Fig. 10 shows the mask overlap
result, the identification of one microfossil specimen (highlighted with
the red rectangle) followed by its magnified version and the correlation
of this magnified version with the other two versions of the same spe-
cimen (physically isolated and digitized with the Versa XRM-500 Mi-
croCT and the Zeiss Discovery V20 stereoscope). Fig. 11 shows the
original volume 3D rendered and its generated masks result also 3D
rendered.

Fig. 6. Best microfossil segmentation that we could obtain using 3D active contours (IOU = 20%).
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5. Discussion and conclusions

In this paper we present a new non-destructive processing pipeline
for the identification of microfossils in carbonate rocks that allows a
fully automated segmentation of these fossils without the need of pre-
vious physical separation. Furthermore, we developed and validated
the CV methods for this identification and segmentation. The validation
was quantitatively and automatically performed against a ground truth
manually generated by expert micropaleontologists.

An extremely relevant aspect of the developed pipeline for the field

of paleontology, more specifically micropaleontology, resides in the
non-destructive character of the method. In the micropaleontological
study process an essential step is the samples preparation, aiming to
separate the microfossils from the other rock and/or sediments. In the
traditional laboratory process, the samples are physically disaggregated
(ground or milled) and subsequently chemically with addition of re-
agents (e.g., hydrogen peroxide and acetic acid). Both physical or
chemical disaggregation can alter or even destroy microfossils char-
acteristics. In this regard, the imaging method is crucial for the mor-
phological characteristics visualization as reliable as possible, allowing

Fig. 7. Obtained microfossil segmentation results with the 4-classes approach. (A) Original digitalized image. (B) Ground Truth manually generated by pa-
leontologists. (C) UNET + ResNet34.

Fig. 8. The ground truth (A) and the obtained microfossil segmentation result (B) with 4 classes, automated hyper-parameters search and additional data aug-
mentation.
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the individuals taxonomic recognition (Kachovich et al., 2019).
Another relevant factor that makes this method meaningful is that it

allows the microorganisms' preservation analysis throughout geological
time, as well as aspects of fossilization, preservation and even position
in which the microfossils are deposited (preserved) in the rocks. It
should be emphasized that studies with the taphonomic approach are
fundamental for paleoenvironmental conditions and/or diagenetic al-
teration processes reconstitution over geological time. Also, the use of
this tool is strongly indicated in cases where it is extremely difficult to
recover microfossils along specific sections and/or intervals where the
material (rock) is very compact and even when it presents incipient
diagenetic alteration. The microfossils identification is strategic for the
exploration of petroleum due to the use in biostratigraphy, which refers
to the use of microfossils from different groups to perform the temporal
characterization of sedimentary rock strata, fundamental for the pet-
roleum industry and academic science.

A few observations are noted from the obtained results: (i) the im-
portance of employing appropriate hyper-parameters such as learning
rate, weight decay, momentum and batch size (the hyper-parameters
optimization improved the results by 20%). (ii) a network architecture
growth does not imply in better results. It is possible to observe that the
ResNet34 shows the same results than the ResNet50 and a better result
when compared with a ResNet101. However, at this point we have a
hardware limitation: both, ResNet50 and ResNet101, could not run
with the full image resolution on the 11 GB GeForce 1080 TI, even with
a small batch size. (iii) Analyzing the resulting images and comparing
them visually against their ground truth (Fig. 9), we still notice some

small errors. However, we understand that this can be be mitigated by
adding more training samples, together with GTs from experts, to the
training set when applying this pre-trained network to other, new,
samples. Also, there are always cutting edge developments that could
be tried aiming to reduce even more these small errors. Fig. 10 shows
the isolated microfossil digitalized and its correlated identification into
the sample.

We understand that this process of microfossil identification
without the need of physically isolation has the potential to allow the
paleontologist to analyze specific aspects of a sample such as the mi-
crofossils deposition. This is important for some applications in the oil
and gas industry. It also has the potential to improve the paleontolo-
gist's work, because instead of losing time to physically isolate the
microfossil he receives the microfossil already identified and can per-
form other analyses such as class identification and orientation.

5.1. Threats to validity

We employed a dataset that, even if consisted of a very large
quantity of images and presented a wide variety of microfossils (more
than 4600 specimens), was acquired from a sample obtained from a
singular drill core. On the other side, the samples digitization and an-
notation demand a set of requirements such as: having a MicroCT
working and available; the cost of the MicroCT digitisation process; a
storage to keep the amount of generated data; and a paleontologist
group to analyze and annotate each digitized slice sample. As the
workflow we suggest in this paper is new, it was not in place on any of
the partners that participated in this work and to obtain more scanned
and annotated samples was not possible at this point of our research.

The generalizability of this work could be jeopardized, as we do not
have enough data to claim that our approach will be successfully ap-
plicable to any carbonatic rock sample. Also, when dealing with deep
learning approaches, using small datasets can result in overfitting. On
the other hand, our segmentation results were extremely successful and
promising. Furthermore, with this singular drill sample we obtained a
large variability of species (more than 4600 specimens) which shows
the affluence of the analyzed sample. Additionally, from the authors'
knowledge, there is not any other publicly available carbonatic rock
probe dataset, with or without specialist-annotated microfossils.

In this context, we understand our work as pioneering and pointing

Table 2
Segmentation performance in terms of IOU value. Each method was evaluated
in a set of 1000 images from annotate microfossil data.

Method IOU score

Active contours 0.20
UNET + ResNet34 + Only 2 classes (fossil and background) 0.45
UNET + ResNet34 0.76
UNET + ResNet18 + hyper-parameter optimization 0.97
UNET + ResNet101 + hyper-parameter optimization 0.97
UNET + ResNet34 + hyper-parameter optimization 0.98
UNET + ResNet50 + hyper-parameter optimization 0.98

Fig. 9. (A) Original digitalized image. (B) Ground Truth manually generated by paleontologists. (C) UNET + ResNet18 + hyper-parameter optimization. (D) UNET
+ ResNet101 + hyper-parameter optimization. (E) UNET + ResNet34 + hyper-parameter optimization. (F) UNET + ResNet50 + hyper-parameter optimization.
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to a promising direction of research that can potentialize both micro-
paleontological research and associated economical activities, such as
oil prospection. Our publicly available fully annotated MicroCT data-
base has also the potential to support research activities to be per-
formed by other groups.

5.2. Conclusions

Summarizing, this work presents the first fully annotated MicroCT-
acquired publicly available microfossils dataset additionally with a
baseline for microfossil segmentation comparison. Furthermore, it is
shown a methodology for microfossil studies through MicroCT-acquired
digital models and also a tool for cases where it is extremely difficult to
recover microfossils along specific sections.

With the improvement in the available hardware some future work
aim to reduce even more the obtained errors by increasing the batch
size and image resolution and employ newer deep learning techniques.
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Fig. 10. Result of applying the obtained segmentation mask over the digitized image. (A) contrast-enhanced 2D section image masked from the digitized MicroCT
volume with one specific microfossil highlighted in red. (B) Highlighted microfossil extracted and magnified for visualization. (C) Physically isolated microfossil
digitized with The Versa XRM-500 MicroCT. (D) Cibicidoides multidimensional acquisition with the Zeiss Discovery V20 stereoscope. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. (A) The original 3D rendered volume and (B) its 3D version of the masking result.
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