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Creating complex neural networks with
different architectures in Python should be a
standard practice for any machine learning
engineer or data scientist. But a genuine
understanding of how a neural network works
is equally valuable. In this article, learn the
fundamentals of how you can build neural
networks without the help of the frameworks
that might make it easier to use.

While reading the article, you can open the
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notebook on  and run the code at
the same time.

Prerequisites
In this article, I explain how to make a basic
deep neural network by implementing the
forward and backward pass
(backpropagation). This requires some
specific knowledge about the functions of
neural networks.

It's also important to know the fundamentals
of linear algebra to be able to understand
why I perform certain operations in this
article. My best recommendation is to watch
3Blue1Brown's series 

.

NumPy
In this article, I build a basic deep neural
network with 4 layers: 1 input layer, 2 hidden
layers, and 1 output layer. All of the layers are
fully connected. I'm trying to classify digits
from 0 - 9 using a data set called .
This data set consists of 70,000 images that
are 28 by 28 pixels each. The data set
contains one label for each image that
specifies the digit that I see in each image. I
say that there are 10 classes because I have
10 labels.

Interested in generative
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10 examples of the digits from the MNIST
data set, scaled up 2x

For training the neural network, I use
stochastic gradient descent, which means I
put one image through the neural network at
a time.

Let's try to define the layers in an exact way.
To be able to classify digits, you must end up
with the probabilities of an image belonging
to a certain class after running the neural
network because then you can quantify how
well your neural network performed.

1. Input layer: In this layer, I input my data
set consisting of 28x28 images. I flatten
these images into one array with
28×28=78428×28=784 elements. This
means that the input layer will have 784
nodes.

2. Hidden layer 1: In this layer, I reduce the
number of nodes from 784 in the input
layer to 128 nodes. This creates a
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challenge when you are going forward in
the neural network (I'll explain this later).

3. Hidden layer 2: In this layer, I decide to go
with 64 nodes, from the 128 nodes in the
first hidden layer. This is no new challenge
because I've already reduced the number
in the first layer.

4. Output layer: In this layer, I reduce the 64
nodes to a total of 10 nodes so that I can
evaluate the nodes against the label. This
label is received in the form of an array
with 10 elements, where one of the
elements is 1 while the rest are 0.

You probably realize that the number of
nodes in each layer decreases from 784
nodes to 128 nodes to 64 nodes to 10 nodes.
This is based on 
that this yields better results because we're
not overfitting nor underfitting, only trying to
get just the right number of nodes. The
specific number of nodes chosen for this
article were chosen at random, although
decreasing to avoid overfitting. In most real-
life scenarios, you would want to optimize
these parameters by brute force or good
guesses, usually by grid search or random
search, but this is outside the scope of this
article.

empirical observations

https://www.heatonresearch.com/2017/06/01/hidden-layers.html
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Imports and data set
For the entire NumPy part, I specifically
wanted to share the imports used. Note that I
use libraries other than NumPy to more easily
load the data set, but they are not used for
any of the actual neural networks.

Now, I must load the data set and preprocess
it so that I can use it in NumPy. I do
normalization by dividing all images by 255
and make it such that all images have values
between 0 - 1 because this removes some of
the numerical stability issues with activation
functions later on. I use one-hot encoded
labels because I can more easily subtract
these labels from the output of the neural
network. I also choose to load the inputs as
flattened arrays of 28 * 28 = 784 elements

from sklearn.datasets import fetch_openml
from keras.utils.np_utils import to_categorical
import numpy as np
from sklearn.model_selection import train_test_split
import time

Show more
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because that is what the input layer requires.

Initialization
The initialization of weights in the neural
network is a little more difficult to think
about. To really understand how and why the
following approach works, you need a grasp
of linear algebra, specifically dimensionality
when using the dot product operation.

The specific problem that arises when trying
to implement the feedforward neural network
is that we are trying to transform from 784
nodes to 10 nodes. When instantiating the
DeepNeuralNetwork class, I pass in an
array of sizes that defines the number of
activations for each layer.

This initializes the DeepNeuralNetwork
class by the init function.

x, y = fetch_openml('mnist_784', version=1, return_X_y=True)
x = (x/255).astype('float32')
y = to_categorical(y)

x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.15, random_state=42)

dnn = DeepNeuralNetwork(sizes=[784, 128, 64, 10])

Show more

Show more
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Let's look at how the sizes affect the
parameters of the neural network when
calling the initialization() function. I
am preparing m x n matrices that are "dot-
able" so that I can do a forward pass, while
shrinking the number of activations as the
layers increase. I can only use the dot
product operation for two matrices M1 and
M2, where m in M1 is equal to n in M2, or
where n in M1 is equal to m in M2.

With this explanation, you can see that I
initialize the first set of weights W1 with
m=128m=128 and n=784n=784, while the
next weights W2 are m=64m=64 and
n=128n=128. The number of activations in
the input layer A0 is equal to 784, as
explained earlier, and when I dot W1 by the
activations A0, the operation is successful.

def __init__(self, sizes, epochs=10, l_rate=0.001):
    self.sizes = sizes
    self.epochs = epochs
    self.l_rate = l_rate

    # we save all parameters in the neural network in this dictionary
    self.params = self.initialization()

Show more
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Feedforward
The forward pass consists of the dot
operation in NumPy, which turns out to be
just matrix multiplication. I must multiply the
weights by the activations of the previous
layer. Then, I must apply the activation
function to the outcome.

To get through each layer, I sequentially
apply the dot operation followed by the
sigmoid activation function. In the last layer, I
use the softmax activation function because
I want to have probabilities of each class so
that I can measure how well the current
forward pass performs.

Note: I chose a numerically stable version of
the softmax function. You can read more
from the course at Stanford called 
.

def initialization(self):
    # number of nodes in each layer
    input_layer=self.sizes[0]
    hidden_1=self.sizes[1]
    hidden_2=self.sizes[2]
    output_layer=self.sizes[3]

    params = {
        'W1':np.random.randn(hidden_1, input_layer) * np.sqrt(1. / hidden_1),
        'W2':np.random.randn(hidden_2, hidden_1) * np.sqrt(1. / hidden_2),
        'W3':np.random.randn(output_layer, hidden_2) * np.sqrt(1. / output_layer)
    }

    return params

CS231n

Show more

http://cs231n.github.io/linear-classify/#softmax
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The following code shows the activation
functions used for this article. As can be
observed, I provide a derivative version of the
sigmoid because I need that later on when
backpropagating through the neural network.

Backpropagation
The backward pass is hard to get right
because there are so many sizes and

def forward_pass(self, x_train):
    params = self.params

    # input layer activations becomes sample
    params['A0'] = x_train

    # input layer to hidden layer 1
    params['Z1'] = np.dot(params["W1"], params['A0'])
    params['A1'] = self.sigmoid(params['Z1'])

    # hidden layer 1 to hidden layer 2
    params['Z2'] = np.dot(params["W2"], params['A1'])
    params['A2'] = self.sigmoid(params['Z2'])

    # hidden layer 2 to output layer
    params['Z3'] = np.dot(params["W3"], params['A2'])
    params['A3'] = self.softmax(params['Z3'])

    return params['A3']

def sigmoid(self, x, derivative=False):
    if derivative:
        return (np.exp(-x))/((np.exp(-x)+1)**2)
    return 1/(1 + np.exp(-x))

def softmax(self, x):
    # Numerically stable with large exponentials
    exps = np.exp(x - x.max())
    return exps / np.sum(exps, axis=0)

Show more

Show more
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operations that must align for all of the
operations to be successful. Here is the full
function for the backward pass. I go through
each weight update below.

W3 update

The update for W3 can be calculated by
subtracting the ground truth array with labels
called y_train from the output of the
forward pass called output. This operation
is successful because len(y_train) is 10
and len(output) is also 10. An example of
y_train might be the following code, where
the 1 is corresponding to the label of the
output.

def backward_pass(self, y_train, output):
    '''
        This is the backpropagation algorithm, for calculating the updates
        of the neural network's parameters.
    '''
    params = self.params
    change_w = {}

    # Calculate W3 update
    error = output - y_train
    change_w['W3'] = np.dot(error, params['A3'])

    # Calculate W2 update
    error = np.multiply( np.dot(params['W3'].T, error), self.sigmoid(params['Z2'], derivative=True) )
    change_w['W2'] = np.dot(error, params['A2'])

    # Calculate W1 update
    error = np.multiply( np.dot(params['W2'].T, error), self.sigmoid(params['Z1'], derivative=True) )
    change_w['W1'] = np.dot(error, params['A1'])

    return change_w

Show more
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An example of output is shown in the
following code, where the numbers are
probabilities corresponding to the classes of
y_train.

If you subtract them, you get the following.

The next operation is the dot operation that
dots the error (which I just calculated) with
the activations of the last layer.

W2 update

Next is updating the weights W2. More
operations are involved for success. First,
there is a slight mismatch in shapes because

y_train = np.array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0])

output = np.array([0.2, 0.2, 0.5, 0.3, 0.6, 0.4, 0.2, 0.1, 0.3, 0.7])

>>> output - y_train
array([ 0.2,  0.2, -0.5,  0.3,  0.6,  0.4,  0.2,  0.1,  0.3,  0.7])

error = output - y_train
change_w['W3'] = np.dot(error, params['A3'])

Show more

Show more

Show more

Show more
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W3 has the shape (10, 64) and error has
(10, 64), that is, the exact same
dimensions. Therefore, I can use a 

 on the W3 parameter by the .T
such that the array has its dimensions
permuted and the shapes now align up for
the dot operation.

An example of the transpose operation. Left:
The original matrix. Right: The permuted
matrix

W3 now has shape (64, 10) and error has
shape (10, 64), which are compatible with
the dot operation. The result is 

 (also called Hadamard
product) with the outcome of the derivative
of the sigmoid function of Z2. Finally, I dot
the error with the activations of the previous
layer.

transpose
operation

multiplied
element-wise

error = np.multiply( np.dot(params['W3'].T, error), self.sigmoid(params['Z2'], derivative=True) )
change_w['W2'] = np.dot(error, params['A2'])

Show more

https://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html#numpy.transpose
https://docs.scipy.org/doc/numpy/reference/generated/numpy.multiply.html
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W1 update

Likewise, the code for updating W1 is using
the parameters of the neural network one
step earlier. Except for other parameters, the
code is equivalent to the W2 update.

Training (stochastic
gradient descent)
I have defined a forward and backward pass,
but how can I start using them? I must make
a training loop and use stochastic gradient
descent (SGD) as the optimizer to update the
parameters of the neural network. There are
two main loops in the training function. One
loop for the number of epochs, which is the
number of times I run through the entire data
set, and a second loop for running through
each observation one by one.

For each observation, I do a forward pass
with x, which is one image in an array with
the length 784, as explained earlier. The
output of the forward pass is used along
with y, which are the one-hot encoded labels
(the ground truth) in the backward pass. This
gives me a dictionary of updates to the

error = np.multiply( np.dot(params['W2'].T, error), self.sigmoid(params['Z1'], derivative=True) )
change_w['W1'] = np.dot(error, params['A1'])

Show more
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weights in the neural network.

The update_network_parameters()
function has the code for the SGD update
rule, which just needs the gradients for the
weights as input. And to be clear, SGD
involves calculating the gradient using
backpropagation from the backward pass,
not just updating the parameters. They seem
separate, and they should be thought of
separately because the two algorithms are
different.

def train(self, x_train, y_train, x_val, y_val):
    start_time = time.time()
    for iteration in range(self.epochs):
        for x,y in zip(x_train, y_train):
            output = self.forward_pass(x)
            changes_to_w = self.backward_pass(y, output)
            self.update_network_parameters(changes_to_w)

        accuracy = self.compute_accuracy(x_val, y_val)
        print('Epoch: {0}, Time Spent: {1:.2f}s, Accuracy: {2}'.format(
            iteration+1, time.time() - start_time, accuracy
        ))

def update_network_parameters(self, changes_to_w):
    '''
        Update network parameters according to update rule from
        Stochastic Gradient Descent.

        θ = θ - η * ∇J(x, y),
            theta θ:            a network parameter (e.g. a weight w)
            eta η:              the learning rate
            gradient ∇J(x, y):  the gradient of the objective function,
                                i.e. the change for a specific theta θ
    '''

    for key, value in changes_to_w.items():
        for w_arr in self.params[key]:
            w_arr -= self.l_rate * value

Show more

Show more
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After having updated the parameters of the
neural network, I can measure the accuracy
on a validation set that I prepared earlier to
validate how well the network performs after
each iteration over the whole data set.

The following code uses some of the same
pieces as the training function. To start, it
does a forward pass then finds the prediction
of the network and checks for equality with
the label. After that, I sum over the
predictions and divide by 100 to find the
accuracy. Next, I average out the accuracy of
each class.

Finally, I can call the training function after
knowing what will happen. I use the training
and validation data as input to the training
function, and then wait.

def compute_accuracy(self, x_val, y_val):
    '''
        This function does a forward pass of x, then checks if the indices
        of the maximum value in the output equals the indices in the label
        y. Then it sums over each prediction and calculates the accuracy.
    '''
    predictions = []

    for x, y in zip(x_val, y_val):
        output = self.forward_pass(x)
        pred = np.argmax(output)
        predictions.append(pred == y)

    summed = sum(pred for pred in predictions) / 100.0
    return np.average(summed)

dnn.train(x_train, y_train, x_val, y_val)

Show more

Show more
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Note that the results might vary a lot
depending on how the weights are initialized.
My results range from an accuracy of 0% -
95%.

Following is the full code for an overview of
what's happening.

from sklearn.datasets import fetch_openml
from keras.utils.np_utils import to_categorical
import numpy as np
from sklearn.model_selection import train_test_split
import time

x, y = fetch_openml('mnist_784', version=1, return_X_y=True)
x = (x/255).astype('float32')
y = to_categorical(y)

x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.15, random_state=42)

class DeepNeuralNetwork():
    def __init__(self, sizes, epochs=10, l_rate=0.001):
        self.sizes = sizes
        self.epochs = epochs
        self.l_rate = l_rate

        # we save all parameters in the neural network in this dictionary
        self.params = self.initialization()

    def sigmoid(self, x, derivative=False):
        if derivative:
            return (np.exp(-x))/((np.exp(-x)+1)**2)
        return 1/(1 + np.exp(-x))

    def softmax(self, x):
        # Numerically stable with large exponentials
        exps = np.exp(x - x.max())
        return exps / np.sum(exps, axis=0)

    def initialization(self):
        # number of nodes in each layer
        input_layer=self.sizes[0]
        hidden_1=self.sizes[1]
        hidden_2=self.sizes[2]
        output_layer=self.sizes[3]

        params = {
            'W1':np.random.randn(hidden_1, input_layer) * np.sqrt(1. / hidden_1),
            'W2':np.random.randn(hidden_2, hidden_1) * np.sqrt(1. / hidden_2),
            'W3':np.random.randn(output_layer, hidden_2) * np.sqrt(1. / output_layer)
        }
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        return params

    def forward_pass(self, x_train):
        params = self.params

        # input layer activations becomes sample
        params['A0'] = x_train

        # input layer to hidden layer 1
        params['Z1'] = np.dot(params["W1"], params['A0'])
        params['A1'] = self.sigmoid(params['Z1'])

        # hidden layer 1 to hidden layer 2
        params['Z2'] = np.dot(params["W2"], params['A1'])
        params['A2'] = self.sigmoid(params['Z2'])

        # hidden layer 2 to output layer
        params['Z3'] = np.dot(params["W3"], params['A2'])
        params['A3'] = self.softmax(params['Z3'])

        return params['A3']

    def backward_pass(self, y_train, output):
        '''
            This is the backpropagation algorithm, for calculating the updates
            of the neural network's parameters.

            Note: There is a stability issue that causes warnings. This is
                  caused  by the dot and multiply operations on the huge arrays.

                  RuntimeWarning: invalid value encountered in true_divide
                  RuntimeWarning: overflow encountered in exp
                  RuntimeWarning: overflow encountered in square
        '''
        params = self.params
        change_w = {}

        # Calculate W3 update
        error = output - y_train
        change_w['W3'] = np.dot(error, params['A3'])

        # Calculate W2 update
        error = np.multiply( np.dot(params['W3'].T, error), self.sigmoid(params['Z2'], derivative=True) )
        change_w['W2'] = np.dot(error, params['A2'])

        # Calculate W1 update
        error = np.multiply( np.dot(params['W2'].T, error), self.sigmoid(params['Z1'], derivative=True) )
        change_w['W1'] = np.dot(error, params['A1'])

        return change_w

    def update_network_parameters(self, changes_to_w):
        '''
            Update network parameters according to update rule from
            Stochastic Gradient Descent.

            θ = θ - η * ∇J(x, y),
                theta θ:            a network parameter (e.g. a weight w)
                eta η:              the learning rate
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Good exercises in
NumPy
You might have noticed that the code is very
readable, but it takes up a lot of space and
could be optimized to run in loops. Here is a
chance to optimize and improve it. If you're

                gradient ∇J(x, y):  the gradient of the objective function,
                                    i.e. the change for a specific theta θ
        '''

        for key, value in changes_to_w.items():
            for w_arr in self.params[key]:
                w_arr -= self.l_rate * value

    def compute_accuracy(self, x_val, y_val):
        '''
            This function does a forward pass of x, then checks if the indices
            of the maximum value in the output equals the indices in the label
            y. Then it sums over each prediction and calculates the accuracy.
        '''
        predictions = []

        for x, y in zip(x_val, y_val):
            output = self.forward_pass(x)
            pred = np.argmax(output)
            predictions.append(pred == y)

        summed = sum(pred for pred in predictions) / 100.0
        return np.average(summed)

    def train(self, x_train, y_train, x_val, y_val):
        start_time = time.time()
        for iteration in range(self.epochs):
            for x,y in zip(x_train, y_train):
                output = self.forward_pass(x)
                changes_to_w = self.backward_pass(y, output)
                self.update_network_parameters(changes_to_w)

            accuracy = self.compute_accuracy(x_val, y_val)
            print('Epoch: {0}, Time Spent: {1:.2f}s, Accuracy: {2}'.format(
                iteration+1, time.time() - start_time, accuracy
            ))

dnn = DeepNeuralNetwork(sizes=[784, 128, 64, 10])
dnn.train(x_train, y_train, x_val, y_val)

Show more
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new to this topic, the difficulties of the
following exercises are easy to hard, where
the last exercise is the hardest.

1. Easy: Implement the ReLU activation
function or any other activation function.
Check how the sigmoid functions are
implemented for reference, and remember
to implement the derivative as well. Use
the ReLU activation function in place of the
sigmoid function.

2. Easy: Initialize biases and add them to Z
before the activation function in the
forward pass, and update them in the
backward pass. Be careful of the
dimensions of the arrays when you try to
add biases.

3. Medium: Optimize the forward and
backward pass such that they run in a for
loop in each function. This makes the code
easier to modify and possibly easier to
maintain.

Optimize the initialization function that
makes weights for the neural network
such that you can modify the sizes=[]
argument without the neural network
failing.

4. Medium: Implement mini-batch gradient
descent, replacing stochastic gradient
descent. Instead of making an update to a
parameter for each sample, make an
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update based on the average value of the
sum of the gradients accumulated from
each sample in the mini-batch. The size of
the mini-batch is usually below 64.

5. Hard: Implement the Adam optimizer. This
should be implemented in the training
function.

1. Implement Momentum by adding the
extra term

2. Implement an adaptive learning rate,
based on the AdaGrad optimizer

3. Combine step 1 and 2 to implement
Adam

My belief is that if you complete these
exercises, you will have a good foundation.
The next step is implementing convolutions,
filters, and more, but that is left for a future
article.

As a disclaimer, there are no solutions to
these exercises.

PyTorch
Now that I've shown how to implement these
calculations for the feedforward neural
network with backpropagation, let's see how
easy and how much time PyTorch saves us in
comparison to NumPy.
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Loading MNIST data
set
One of the things that seems more
complicated or harder to understand than it
should be is loading data sets with PyTorch.

You start by defining the transformation of
the data, specifying that it should be a tensor
and that it should be normalized. Then, you
use the DataLoader in combination with the
data sets import to load a data set. This is
all you need. You'll see how to unpack the
values from these loaders later.

Training
I have defined a class called Net that is
similar to the DeepNeuralNetwork class
written in NumPy earlier. This class has some

import torch
from torchvision import datasets, transforms

transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize((0.1307,), (0.3081,))
            ])

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('data', train=True, download=True, transform=transform))

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('data', train=False, transform=transform))

Show more
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of the same methods, but you can clearly see
that I don't need to think about initializing the
network parameters nor the backward pass
in PyTorch because those functions are gone,
along with the function for computing
accuracy.

import time
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self, epochs=10):
        super(Net, self).__init__()
        self.linear1 = nn.Linear(784, 128)
        self.linear2 = nn.Linear(128, 64)
        self.linear3 = nn.Linear(64, 10)

        self.epochs = epochs

    def forward_pass(self, x):
        x = self.linear1(x)
        x = torch.sigmoid(x)
        x = self.linear2(x)
        x = torch.sigmoid(x)
        x = self.linear3(x)
        x = torch.softmax(x, dim=0)
        return x

    def one_hot_encode(self, y):
        encoded = torch.zeros([10], dtype=torch.float64)
        encoded[y[0]] = 1.
        return encoded

    def train(self, train_loader, optimizer, criterion):
        start_time = time.time()
        loss = None

        for iteration in range(self.epochs):
            for x,y in train_loader:
                y = self.one_hot_encode(y)
                optimizer.zero_grad()
                output = self.forward_pass(torch.flatten(x))
                loss = criterion(output, y)
                loss.backward()
                optimizer.step()

            print('Epoch: {0}, Time Spent: {1:.2f}s, Loss: {2}'.format(
                iteration+1, time.time() - start_time, loss
            ))

Show more
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When reading this class, notice that PyTorch
has implemented all of the relevant
activation functions for us, along with
different types of layers. You don't even have
to think about it. You can just define some
layers like nn.Linear() for a fully
connected layer.

I have imported optimizers earlier, and now I
specify which optimizer I want to use, along
with the criterion for the loss. I pass both the
optimizer and criterion into the training
function, and PyTorch starts running through
the examples just like in NumPy. I could even
include a metric for measuring accuracy, but
that is left out in favor of measuring the loss
instead.

TensorFlow 2.0
with Keras
For the TensorFlow/Keras version of the
neural network, I chose to use a simple
approach, minimizing the number of lines of
code. That means I am not defining any class,
but instead using the high-level API of Keras

model = Net()

optimizer = optim.SGD(model.parameters(), lr=0.001)
criterion = nn.BCEWithLogitsLoss()

model.train(train_loader, optimizer, criterion)

Show more
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to make a neural network with just a few lines
of code. If you are just starting to learn about
neural networks, you will find that the bar to
entry is the lowest when using Keras.
Therefore, I recommend it.

I start by importing all of the functions I need
for later.

I can load the data set and preprocess it with
just these few lines of code. Note that I only
preprocess the training data because I'm not
planning on using the validation data for this
approach. Later, I explain how we can use the
validation data.

The next step is defining the model. In Keras,
this is extremely simple after you know which
layers you want to apply to your data. In this
case, I'm going for the fully connected layers,
as in the NumPy example. In Keras, this is
done by the Dense() function.

import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.layers import Flatten, Dense
from tensorflow.keras.losses import BinaryCrossentropy

(x_train, y_train), (x_val, y_val) = mnist.load_data()

x_train = x_train.astype('float32') / 255
y_train = to_categorical(y_train)

Show more
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After I have defined the layers of the model, I
compile the model and define the optimizer,
loss function, and metric. Finally, I can tell
Keras to fit to the training data for 10 epochs,
just like in the other examples.

If you want to use the validation data, you
could pass it in using the validation_data
parameter of the fit function:

Conclusion
This article gave you the fundamentals of
how you can build neural networks without
the help of the frameworks that might make it
easier to use. I built a basic deep neural
network with 4 layers, and I explained how to
make a basic deep neural network by
implementing the forward and backward

model = tf.keras.Sequential([
    Flatten(input_shape=(28, 28)),
    Dense(128, activation='sigmoid'),
    Dense(64, activation='sigmoid'),
    Dense(10)
])

model.compile(optimizer='SGD',
              loss=BinaryCrossentropy(),
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=10)

model.fit(x_train, y_train, epochs=10, validation_data=(x_val, y_val))

Show more

Show more
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pass (backpropagation).
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