
3020  |  	﻿�  Methods Ecol Evol. 2023;14:3020–3034.wileyonlinelibrary.com/journal/mee3

Received: 21 February 2023 | Accepted: 8 September 2023

DOI: 10.1111/2041-210X.14229  

R E S E A R C H  A R T I C L E

Fossil image identification using deep learning ensembles of 
data augmented multiviews

Chengbin Hou1,2  |   Xinyu Lin2,3  |   Hanhui Huang4  |   Sheng Xu3  |   
Junxuan Fan4  |   Yukun Shi4  |   Hairong Lv1,2

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2023 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Chengbin Hou, Xinyu Lin and Hanhui Huang contributed equally to this study. 

1Ministry of Education Key Laboratory of 
Bioinformatics, Bioinformatics Division, 
Beijing National Research Center for 
Information Science and Technology, 
Department of Automation, Tsinghua 
University, Beijing, China
2Fuzhou Institute of Data Technology, 
Fuzhou, China
3College of Physics and Information 
Engineering, Fuzhou University, Fuzhou, 
China
4School of Earth Sciences and Engineering 
and Frontiers Science Center for Critical 
Earth Material Cycling, Nanjing University, 
Nanjing, China

Correspondence
Yukun Shi
Email: ykshi@nju.edu.cn

Hairong Lv
Email: lvhairong@tsinghua.edu.cn

Funding information
National Natural Science Foundation of 
China, Grant/Award Number: 42050101 
and 42250104; National Key R&D 
Program of China, Grant/Award Number: 
2021YFB3600401; Fujian Provincial 
Natural Science Foundation, Grant/Award 
Number: 2021J01586; Deep-time Digital 
Earth (DDE) Big Science Program. 

Handling Editor: Arthur Porto

Abstract
1.	 Identification of fossil species is crucial to evolutionary studies. Recent advances 

from deep learning have shown promising prospects in fossil image identifica-
tion. However, the quantity and quality of labelled fossil images are often limited 
due to fossil preservation, conditioned sampling and expensive and inconsistent 
label annotation by domain experts, which pose great challenges to training deep 
learning-based image classification models.

2.	 To address these challenges, we follow the idea of the wisdom of crowds and 
propose a multiview ensemble framework, which collects Original (O), Grey (G) 
and Skeleton (S) views of each fossil image reflecting its different characteristics 
to train multiple base models, and then makes the final decision via soft voting.

3.	 Experiments on the largest fusulinid dataset with 2400 images show that the 
proposed OGS consistently outperforms baselines (using a single model for each 
view), and obtains superior or comparable performance compared to OOO (using 
three base models for three the same Original views). Besides, as the training 
data decreases, the proposed framework achieves more gains. While considering 
the identification consistency estimation with respect to human experts, OGS 
receives the highest agreement with the original labels of dataset and with the 
re-identifications of two human experts. The validation performance provides a 
quantitative estimation of consistency across different experts and genera.

4.	 We conclude that the proposed framework can present state-of-the-art perfor-
mance in the fusulinid fossil identification case study. This framework is designed 
for general fossil identification and it is expected to see applications to other fos-
sil datasets in future work. Notably, the result, which shows more performance 
gains as train set size decreases or over a smaller imbalance fossil dataset, sug-
gests the potential application to identify rare fossil images. The proposed frame-
work also demonstrates its potential for assessing and resolving inconsistencies 
in fossil identification.
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1  |  INTRODUC TION

Evolutionary studies require the accurate and efficient identifi-
cation of extant and especially fossil species, however, the hope 
is often frustrated by several restrictions. Most fossil species 
and many extant species are defined by their phenetic charac-
ters, and thus type specimens need to be assigned to represent 
their typical morphology. Due to the limited accessibility of type 
specimens, identification often relies on images, which presents 
challenges for researchers. This problem is particularly serious 
for palaeontologists, as fossil species assignment is usually based 
on a small number of samples in varying states of preservation 
(Behrensmeyer et al., 2000; Foote & Raup, 1996; Holland, 2016; 
Schopf, 1975), compared to extant species samples that are more 
abundant and readily available. Moreover, as research in the life 
and earth sciences tends to assemble more data for larger-scale, 
higher-resolution studies, the relatively small community of tax-
onomists has to spend a large amount of time and effort in rou-
tine identification tasks, and is thus hindering broader taxonomic 
studies (MacLeod et al.,  2007, 2010). These issues highlight the 
increasing need for auxiliary tools or automatic identification sys-
tems to aid taxonomists in improving the efficiency and accuracy 
of their identification and making large-scale studies with well-
identified samples feasible.

Automatic identification models have remained heavily practiced 
in current biological and ecological studies for years, with numerous 
studies focusing on the identification of extant species (Borowiec 
et al.,  2022; Wäldchen & Mäder,  2018); however, there has been 
less focus on applying them to the studies of deep time. Fossil spe-
cies are as rich in morphological diversity as modern organisms, but 
the available material is severely limited by fossil preservation and 
sampling intensity, which would affect the model training. With a 
limited number of samples, the model may not be able to fully learn 
the differences in features across categories, making it challenging 
to train effectively, or it may overfit, resulting in poor performance 
on the test set or in real-world applications. Another concern is the 
quality of fossil images, which is typically worse than that of mod-
ern species because the formation, burial and sampling conditions 
of fossils can greatly alter the images, posing a greater challenge 
to the recognition ability of the model. The problem also lies in the 
labelling process. Taxonomic and systematic studies of some fossil 
groups, mostly relying on limited morphological information due to 
the general lack of molecular data, are insufficient and sometimes 
contradictory. This could lead to disagreement among experts, caus-
ing inconsistency in data annotation and affecting the training of 
supervised learning models.

Nonetheless, recent advances in the use of deep learning models 
for taxonomic identification have shown promising prospects for the 

application on fossil taxa, including foraminifera (Hsiang et al., 2019; 
Marchant et al., 2020; Mitra et al., 2019; Pires de Lima et al., 2020), 
graptolites (Niu & Xu,  2022), fossil leaves (Wilf et al.,  2021), pol-
len (Punyasena et al.,  2022) and multiple-body-fossil mixture (Liu 
et al.,  2022). The identification of modern foraminifera could be 
well compared to that of fossil foraminifera due to their close mor-
phology and modes of preservation, and they are also among the 
first to be tested for species identification using deep learning. In 
their excellent study, Hsiang et al. (2019) constructed a large image 
dataset of over 34,000 planktonic foraminifera and used most of 
these images to train three commonly used neural networks, VGG-
16, DenseNet-121 and Inception-v3. The species-level identification 
achieved a maximum accuracy of 87.4%, which is comparable to 
the expert accuracy of 63%–85%. In another study also conducted 
on modern foraminifera, Mitra et al. (2019) performed a more sys-
tematic comparison of human expert versus machine performance. 
Their results reveal that the combination of VGG-16 and ResNet-50 
neural networks could achieve an accuracy of at least 80%, while 
the performance of 11 human identifiers varied dramatically with an 
average accuracy of 63%. These studies show the promise of deep 
learning for fossil species identification. However, many thorny is-
sues might arise as the categories and ages of fossils expand.

To delve into the automatic identification of fossils, we take 
fusulinids, a large group of fossil foraminifera dating back to c. 
300 Ma, as the subject of our study. Fusulinids are the earliest 
larger benthic foraminifera that appeared in the shallow water of 
the Carboniferous and survived until the Late Permian (Pawlowski 
et al., 2003; Vachard et al., 2010). Their rapid evolution, as seen 
in morphological changes, makes them prominent index fossils 
for the Late Palaeozoic biostratigraphy, that is, dating the bearing 
rocks (BouDagher-Fadel, 2008; Ross & Ross, 1991). Unlike modern 
foraminifera, fusulinids are primarily preserved in rocks that are 
difficult to separate, and studies are typically conducted on thin 
slices of the fossils that have been professionally made from rocks. 
This procedure compresses the three-dimensional morphological 
features into two dimensions, which is also common in the stud-
ies of other fossils such as corals, brachiopods, archaeocyathids, 
plants and even vertebrate bones. To meet different research 
needs, multiple sections of fusulinid fossils, including axial, sagit-
tal and tangential sections, could be produced, and axial sections 
are preferred for identification as they contain the most useful 
features (Sheng et al., 1988; Vachard et al., 2010). This slice-based 
identification of fusulinids is very beneficial for applying auto-
matic identification models, as deep learning models based on 
two-dimensional images have already been well developed. The 
use of deep learning on fusulinid identification is a rather unex-
plored subject, and, to our knowledge, only one study by Pires de 
Lima et al. (2020) serves as an example. They collected images of 
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fusulinids from thin-slice micrographs and literature to construct a 
dataset containing 342 images of eight genera. Five standard neu-
ral network models (VGG-19, Inception-v3, MobileNet-v2, Res-
Net-50, and DenseNet-121) were trained on their dataset using 
transfer learning, and a maximum accuracy of 89% was achieved 
on Inception-v3 (Pires de Lima et al., 2020). Although the dataset 
they used is small and has a rather uneven distribution of catego-
ries (the smallest category has only 15 images, while the largest 
has 88), it still provides extremely valuable feasibility validation. 
To investigate the effectiveness of the newly proposed method 
in this study, we utilize the largest dataset of fusulinids to date 
(Huang et al., 2023), containing 2400 images from 16 genera that 
cover all six fusulinid subfamilies with respect to the classification 
system of Sheng et al. (1988).

Distinguished from the previous fossil identification studies 
that directly apply the existing machine learning and deep learning 
models, we follow the idea of the wisdom of crowds and propose a 
multiview ensemble framework (i.e. a kind of meta-method) to fur-
ther improve the performance of existing deep learning models. 
Specifically, to compensate for the image quality and sample size, 
the fossil images in the original form are transformed into other 
fossil identification preferred forms to highlight various features 
of the same fossil image from diverse views. The diverse views 
of training images with their labels are then fed respectively to 
train multiple base models, and the predictions from these base 
models are combined to provide the final predictions. According 
to the proposed framework and the characteristics of fusulinids, 
we develop the OGS method that feeds the Original (O), Grey (G) 
and Skeleton (S) views of fusulinid images to three base models 
respectively. We select several milestone models in deep learning 
(ResNet, MobileNet, Inception, EfficientNet and RegNet) as the 
base model to validate the effectiveness of the proposed frame-
work and the OGS method.

The main novelty of the proposed framework lies in the input 
to each base model. The choice of diverse input views depends 
on the characteristics of concrete applications, for example, the 
Grey view may help filter colour noise, and the Skeleton view 
could help extract morphological features, as demonstrated in this 
study to identify fusulinid fossil images. On the one hand, the pro-
posed framework is motivated by the bagging framework (Dong 
et al., 2020; Zhou, 2021) in the field of ensemble learning, which 
is rarely used in fossil image classification. The main difference is 
that the bagging framework takes random samples from original 
images as the input to each base model. On the other hand, the 
proposed method is also inspired by the recent advances using 
data augmentation and ensemble to boost performance (He 
et al.,  2016; Shorten & Khoshgoftaar,  2019; Simonyan & Zisser-
man, 2015). However, these deep learning studies often perform 
several data augmentation techniques (to enrich samples) to train 
or infer over a single model respectively, and an ensemble tech-
nique is employed to combine the outputs from that single model 
during testing. Note that the proposed method trains and infers 
over multiple base models using fossil-dedicated and meaningful 

views rather than commonly used data augmentation techniques 
such as resize, crop and flip.

The main contributions of this work as follows. First, we pro-
pose a multiview ensemble framework rather than a specific 
method, which can be broadly applied to various deep learning 
image classification models. Second, considering the characteris-
tics of fossil images, we suggest the Grey and Skeleton views for 
data augmentation and accordingly develop the OGS ensemble. 
Extensive experiments on two fossil image datasets over five rep-
resentative deep learning models are conducted to demonstrate 
the merits of OGS method. Third, further consistency experiments 
involving OGS models and human experts are performed, and the 
inconsistency among human-given labels is analysed. The results 
show the potential of using OGS model to assess and resolve iden-
tification inconsistency. Finally, the source code (Hou et al., 2023) 
is publicly available at https://github.com/houch​engbi​n/Fossi​
l-Image​-Ident​ifica​tion to benefit future research in fossil image 
identification.

2  |  MATERIAL S AND METHODS

2.1  |  Dataset

The main dataset used in this work is ‘Fusulinid images 2400 - 
NJU’, which is described in detail in Huang et al. (2023) and here-
after referred to as the Huang et al. (2023) dataset. It is available 
for download at DDE repository at https://doi.org/10.12297/​dpr.
dde.202211.5. It consists of 2400 thin-slice images of fusulinid 
individuals, including 295 microscope photos and 2105 scanned 
images from the literature. The images are stored as PNG files 
with the transparency channel annotating the outline of the fos-
sils and labelled according to their species name and data source. 
The 2400 images are selected evenly from 16 genera of all six 
fusulinid families: Fusulinidae, Schwagerinidae, Ozawainellidae, 
Schubertellidae, Neoschwagerinidae and Verbeekinidae (see 
Table  1). Images of holotypes, paratypes, cotypes and syntypes 
of the selected species are preferably chosen as they better rep-
resent the described morphological features. Although the images 
are labelled to the species level, using this level would result in a 
significantly imbalanced data volume, so the genus level was cho-
sen in our study. In the main experiments, the Huang et al. (2023) 
dataset is split into a training set, a validation set and a test set, 
with 110, 20 and 20 images for each genus as the default setting. 
Other split ratios over this dataset are also carefully examined, as 
shown in Section 3.2 and Figure 2.

2.2  |  Problem formulation

The fossil identification problem is a typical multiclass image 
classification problem. Considering a fossil dataset with totally 
k categories, the aim is to build a classification model f  such 

https://github.com/houchengbin/Fossil-Image-Identification
https://github.com/houchengbin/Fossil-Image-Identification
http://doi.org/10.12297/dpr.dde.202211.5
http://doi.org/10.12297/dpr.dde.202211.5
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that it can successfully predict a correct label for a given input 
image. The category can be species, genera or other taxonomic 
ranks. In this work, the goal is to predict the labels of fusulinid 
images to the genus level. More specifically, a set of known la-
belled data 

{(

Ximg, y
)

, …
}

 are given for training. Each category 
y ∈ {1, 2, 3, … , k} has at least one training sample. We build 
model f  with trainable parameters and train f  using the available 
training set. After that, the trained f  can predict label ŷ  given an 
unlabelled image Ximg.

2.3  |  Method

2.3.1  |  Overview

This work introduces a multiview ensemble framework (or a meta-
method) for fossil image identification. The purpose is to further 
improve the performance of representative deep learning mod-
els for fossil classification by using suitable computer science 
techniques and considering fossil characteristics. Concretely, we 
employ multiple base models to learn from the multiviews of the 
original input fossil images. Each base model and view are one-to-
one correspondence so that each base model can extract diverse 
features for making individual predictions. The final decision is 
made by combining the predictions from multiple classifiers fol-
lowing the wisdom of crowds so that the ensemble of multiple 
classifiers can benefit from a more complementary set of diverse 
features. There could be many different choices of the multiviews 
of original images, and Figure  1 elaborates the proposed frame-
work using the Original, Grey and Skeleton views (i.e. OGS method) 
towards fossil image classification.

2.3.2  |  Base models

The base models are the fundamental components of the pro-
posed framework. The qualified base models should first be the 
candidate for solving the problem formulated in Section 2.2. Since 
the problem to solve is a typical multiclass image classification 
problem, a large number of models based on deep convolutional 
neural networks (CNNs) can be adopted as the base models for 
this problem (Li et al., 2021). Essentially, the base model tries to 
automatically extract proper image features using the convolu-
tional filters, such that these features are discriminative for mak-
ing correct predictions. Each base model is trained using one view 
of the labelled images, and the error (via cross-entropy) between 
the predicted label (a predicted probability distribution over 
all classes) and the ground truth label (a probability distribution 
where 1 for the true class and 0 for other classes, i.e. one-hot vec-
tor) is back propagated to adjust the trainable parameters in deep 
learning models. After training, we obtain the trained base model 
fbase which can map or transform an input image Ximage to a prob-
ability distribution z overall k classes, that is,

The selected milestones of deep learning models for image clas-
sification are summarized below. These models, with the latest data 
argumentation and the state-of-the-art updates by famous deep 
learning library TIMM1 and also with the pre-trained model parame-
ters from ImageNet dataset, are respectively employed as the base 
model fbase of the proposed multiview ensemble framework.

(1)fbase:Ximage ↦ z ∈ ℝ
k .

 1https://github.com/huggi​ngfac​e/pytor​ch-image-models.

Family Subfamily Genus Number of images

Fusulinidae Fusulininae Fusulina 150

Fusulinidae Fusulinellinae Fusulinella 150

Fusulinidae Staffellinae Nankinella 150

Schwagerinidae Schwagerininae Chusenella 150

Schwagerinidae Schwagerininae Eoparafusulina 150

Schwagerinidae Schwagerininae Parafusulina 150

Schwagerinidae Schwagerininae Pseudofusulina 150

Schwagerinidae Schwagerininae Quasifusulina 150

Schwagerinidae Schwagerininae Rugosofusulina 150

Schwagerinidae Schwagerininae Schwagerina 150

Schwagerinidae Schwagerininae Triticites 150

Schwagerinidae Pseudoschwagerininae Pseudoschwagerina 150

Ozawainellidae Ozawainellinae Eostaffella 150

Schubertellidae Schubertellinae Schubertella 150

Neoschwagerinidae Neoschwagerininae Neoschwagerina 150

Verbeekinidae Misellininae Misellina 150

Note: Genus level is used in this work. The classification system follows that of Sheng et al. (1988).

TA B L E  1  Overview of the taxonomy 
and number of images in the Huang  
et al. (2023) dataset.

https://github.com/huggingface/pytorch-image-models
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•	 ResNet or Residual Network (He et al., 2016) is one of the repre-
sentative types of CNNs, which aims to effectively include more 
convolutional layers in CNN using skip connections between some 
layers. The specific ResNet adopted in this work is ResNet-50.2

•	 MobileNet (Howard et al., 2017) is a light model that greatly re-
duces the number of parameters in CNN, and is originally de-
signed for mobile devices. MobileNet-v3 (more specifically 
MobileNet-v3-large-100)3 is tested in this work, which uses the 
neural architecture search (Zoph & Le, 2016) to modify MobileNet.

•	 Inception-v4 (Szegedy et al.,  2017) is a CNN model developed 
from Inception-v1 also known as GoogLeNet (Szegedy et al., 2015) 
where the inception module is introduced. Compared to previous 
versions, Inception-v44 has a simplified architecture (without re-
sidual connections) with more inception modules.

•	 EfficientNet (Tan & Le, 2019) presents a novel approach to uni-
formly scale width, depth, and resolution over a base CNN model 
using a compound coefficient (given that coefficient in a con-
straint optimization for width, depth and resolution). Considering 
relatively small datasets, EfficientNet-b25 is chosen for the 
experiments.

•	 RegNet (Radosavovic et al.,  2020) is a simple network design 
space coming from the neural architecture search (Zoph & 
Le, 2016) over a large network design space. The network design 
space is restricted by the quantized linear function for widths and 

depths. RegNetY (more specifically RegNetY-032)6 is experi-
mented in this work.

2.3.3  |  Data augmented multiviews

The purpose of multiviews is to encourage base models to make 
good individual predictions, and in the meanwhile be complemen-
tary to each other. The classical bagging strategy (Zhou, 2021) that 
creates multiple random subsets of the original training set would 
likely reduce the available unique training data at each view. To al-
leviate this challenge, the most regular method is to duplicate the 
original training set for each view, which gives the naive version 
called OOO when considering three views. To increase the diversity 
between the three views and base models, we further propose two 
extra meaningful views called the Grey view (ignoring RGB colour 
that contains no morphological information) and the Skeleton view 
(focusing on the topology of fossil skeleton), and accordingly come 
up with the augmented version called OGS. There could be other 
possible meaningful transformations, other combinations of views 
and even many more views. We provide preliminary research in this 
direction and leave others as future work. Formally, we have

where the function ftrans_m transforms the original image Ximage to 
view m and produces augmented image Xview_m. Letting m = 3, for 
naive version OOO, ftrans_1, ftrans_2, ftrans_3 = I, I, I where I  is identity ma-
trix. Regarding OGS, ftrans_2 converts original images to grey images 

 2https://github.com/huggi​ngfac​e/pytor​ch-image-model​s/blob/main/timm/model​s/
resnet.py.
 3https://github.com/huggi​ngfac​e/pytor​ch-image-model​s/blob/main/timm/model​s/mobil​
enetv3.py.
 4https://github.com/huggi​ngfac​e/pytor​ch-image-model​s/blob/main/timm/model​s/incep​
tion_v4.py.
 5https://github.com/huggi​ngfac​e/pytor​ch-image-model​s/blob/main/timm/model​s/effic​
ientn​et.py.

 6https://github.com/huggi​ngfac​e/pytor​ch-image-model​s/blob/main/timm/model​s/
regnet.py.

(2)ftrans_1, ftrans_2, … , ftrans_m:Ximage ↦ Xview_1,Xview_2, … ,Xview_m,

F I G U R E  1  Overview of the proposed multiview ensemble framework and the OGS method for fossil image identification. The original 
image is augmented into three views, that is, Original, Grey and Skeleton views. Each view is fed into respective base models. The final 
decision is made by combining the predictions from these base models. The example fusulinid image is Beedeina euryteines, courtesy of Dr. 
Rafael Augusto Pires de Lima.

https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/resnet.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/resnet.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/mobilenetv3.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/mobilenetv3.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/inception_v4.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/inception_v4.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/efficientnet.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/efficientnet.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/regnet.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/regnet.py
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via Grey = 0.299R + 0.587G + 0.114B where R is for the red channel, 
G is for the green channel and B is for the blue channel of the original 
images. ftrans_3 converts the grey images to binary images, and then 
employs Zhang's method (Zhang & Suen, 1984) for skeletonization 
that reduces binary objects to one pixel-wide representation.

2.3.4  |  Ensemble mechanism

To reduce the risk of overfitting due to the limited and expensive 
labelled fossil data, we maintain the number of unique training data 
at each view by data augmentation as described in Section  2.3.3, 
which is distinguished from bagging strategy (Dong et al., 2020). The 
m views of original images Xview_m are respectively fed to m base mod-
els fbase_m, and produce m probability distribution zm over k classes. 
For each view and base model, we mathematically have

Each base model is trained using the same number of training 
data 

{(

Xview_m, y
)

, …
}

 from each view. The trainable parameters in 
fbase_m are optimized by gradually reducing the error between the 
predicted class probability distribution zm and ground truth label 
probability distribution. After training, each base model fbase_m can 
be used to make its own predictions zm given the corresponding aug-
mented image Xview_m. The final decision is made via

where function fcomb combines the predictions z1, z2, … , zm from m 
views and models, and produces the final prediction or final probability 
distribution z. Note that m is set to three in this work, and we take soft 
voting, that is, fcomb

(

z1, z2, z3
)

=
(

z1 + z2 + z3

)

∕3 for combining the 
predictions. The operator argmax over k means finding the maximum 
probability in vector z ∈ ℝ

k and returning the corresponding index as 
the predicted label ŷ.

2.4  |  Experimental settings

The main dataset, that is, the Huang et al. (2023) dataset, consists of 
2400 fossil images of fusulinid individuals of 16 genera, with 150 im-
ages each. For this multiclass classification problem, the widely used 
Acc@1 (true class matching with the top-1 probable predicted class, 
which is equivalent to Micro-F1 in our case), Acc@3 (true class included 
in the top-3 probable predicted classes) and Macro-F1 (harmonic mean 
of precision and recall over classes) are adopted as the metrics to evalu-
ate the performance of the trained model in predicting test images.

Regarding hyperparameters, we search learning rate [0.001, 0.01, 
0.1] and batch size [32, 64, 128] for each base model (in total nine com-
binations), and set the epoch to 500 and use the default TIMM hyperpa-
rameters for others. The best hyperparameters of each model for each 
view are selected respectively by comparing the average of two inde-
pendent runs of Acc@1 results (see Supporting Information S2 for the 

best hyperparameters used). And these hyperparameters are then em-
ployed in the following experiments. The experiments are conducted 
on the GPU server, NVIDIA GeForce RTX 3090 Ti with 24G memory.

3  |  RESULTS

3.1  |  Main experiments

In the main experiments, we consider the Huang et al. (2023) dataset 
as described in Section 2.1, and feed the majority of data with labels 
to train the model. Specifically, each class has 110 images for training 
and 20 images each for validation and testing. Table 2 compares the 
OGS method to other typical variants as baselines.

Some key observations from Table 2 are as follows. First, a compar-
ison between OOO and O shows the naive ensembles of deep learn-
ing models can further improve the performance in most cases, while 
OOO obtains worse results than O when taking EfficientNet-b2 as 
the base model. Second, compared to the O column, that is, the base-
line that simply trains the base model using original images, the en-
semble of data augmented multiviews OGS consistently outperforms 
the baseline O with gains ranging in [0.81, 2.32], [0.41, 1.28] and [0.89, 
2.5] for Acc@1, Acc@3 and Macro-F1 respectively. The improvement 
gains of Acc@3 are less than Acc@1, since Acc@1 is a stricter metric 
than Acc@3 as introduced in experimental settings. Third, the ensem-
ble of data augmented multiviews with Grey and Skeleton views, that 
is, OGS, can obtain generally superior performances (11 of 15 cases in 
terms of mean values) compared to OOO, despite the performances 
of OOO are already quite high. Overall, OGS generally achieves the 
best performance regarding all five deep learning models and three 
widely used multiclass classification metrics.

3.2  |  Different ratio of train set

Machine learning models often need sufficient labelled data to train 
the model so as to relieve the potential overfitting issue. Neverthe-
less, it might be expensive or hard to annotate data, which is typi-
cal when it requires domain experts for annotation, like in our case 
of fusulinids. To this end, we simulate such scenarios by decreasing 
training data. Specifically, the ratios of images in each class for train, 
validation and test set are 0.1–0.8 (with step 0.1), 0.1 and 0.8–0.1 
(with step 0.1) respectively, that is, eight different data splits for 
benchmarks. We choose ResNet-50 (OGS achieving best results in 
Table  2), Inception-v4 (OGS and OOO obtaining similar results in 
Table 2) and RegNetY (OOO achieving best results in Table 2) for the 
experiments, and the results are illustrated in Figure 2.

It is interesting to observe that as the train ratio decreases, OGS 
and OOO (under the proposed framework) obtain more performance 
gains compared with O that employs the original images to train a 
single base model, for example, OGS receives about 6% top-1 accu-
racy gains (on the basis of about 69%) for ResNet-50 when train ratio 
decreases to 0.1. Besides, the error bars of standard deviation of 10 

(3)zm = fbase_m
(

Xview_m

)

, zm ∈ ℝ
k .

(4)ŷ = argmaxk z = argmaxk fcomb
(

z1, z2, … , zm
)

,
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independent runs indicate that OGS and OOO are more robust than 
O. Furthermore, OGS and OOO reach comparable performance for 
various training ratios when taking RegNetY as the base model; OGS 
obtains much better performance than OOO and O (e.g. 1.91% and 
5.24% Acc@1 gains respectively) when considering the smallest train 
ratio 0.1 for Inception-v4 as the base model, despite OGS and OOO 
obtain similar results when feeding about 0.733 of the dataset for 
training as shown in Table 2; OGS considerably outperforms OOO 
for most training ratios when taking ResNet-50 as the base model.

3.3  |  Comparing to similar ensemble framework

The proposed multiview ensemble framework is closely related to 
the bagging framework. Both ensemble frameworks individually 
train multiple base models and make the final predictions by combin-
ing results from the multiple trained base models. They only differ 
in the inputs to multiple base models, but they both try to increase 
the diversity between base models by imposing data augmentation 
or sampling techniques over the inputs. Therefore, the proposed 
framework is compared to OOO-bagging. We follow the standard 
bagging framework (Zhou,  2021) to implement the OOO-bagging 
method. Concretely, the test set of OOO-bagging exactly follows 
that of OGS, that is, first randomly taking out 20 test images for 
each class as described in the main experiments. For OOO-bagging, 
the same number of the remaining images are randomly sampled 
with replacement from the remaining images to create the training 
set (hence some images might be sampled multiple times), and the 
final rest of the images that are not sampled act as the validation 

set. The OOO-bagging method repeats such bootstrapping strategy 
three times from the original view and accordingly trains three base 
models to form the ensemble. The performance comparison of the 
OOO-bagging and the OGS is illustrated in Figure 3.

We observe that OGS significantly outperforms OOO-bagging 
for ResNet-50 and Inception-v4, though they obtain comparable 
performance for other base models. The results indicate that the 
proposed framework might be more effective than the classical bag-
ging framework given the similar computational budget of the en-
semble of three base models. The potential reason could be that the 
number of unique training data for OGS is more than that for OOO-
bagging,7 which might therefore alleviate the overfitting issue due to 
insufficient training data.

 7For our case, according to Sections 2.4 and 3.1, the number of unique training samples for 
each base model of OGS is 110 per class (or 1760 for all classes), while that of OOO-bagging 
is less than 110. Concretely, the bootstrapping strategy of OOO-bagging randomly takes 
the number of n samples with replacement from the given n samples. The number of unique 
training samples can be calculated via 1 +

n − 1

n
+
(

n−1

n

)2

+ ⋯ +
(

n−1

n

)n−1

 where the first 
term 1 is the probability of the first sample being non-repetitive; the second term n − 1

n
 is the 

probability of the second sample being non-repetitive; the third term 
(

n−1

n

)2

 is the 
probability of the third sample being non-repetitive; and the last term is the probability of 
the n-th sample being non-repetitive. Applying the formula of summation for the geometric 
sequence, we finally derive

where n = 130 since there are 20 images per class reserved as test set, the number of 
unique training samples is around 82 images per class (or around 1318 images for all 
classes), and the remaining 48 images per class are used as the validation set. Therefore, 
the number of unique training samples to each base model for OOO-bagging is around 
1318 for all classes, which is smaller than OGS with 1760 unique training samples, that is, 
reducing roughly 25% non-repetitive training samples.

[

1−

(

n−1

n

)n]

×n=

[

1−

(

130−1

130

)130
]

×130≈0.6335×130=82.355,

O G S OOO OGS

Acc@1

ResNet-50 87.98±1.19 88.78±0.86 83.78±1.51 88.88±0.80 90.30†
±0.65

MobileNet-v3 90.23±1.19 90.72±0.75 85.33±1.01 91.33±0.65 91.59†
±0.66

Inception-v4 89.78±1.13 89.63±1.18 85.39±1.52 91.16†
±0.70 91.16†

±0.79

Efficientnet-b2 90.72±0.50 90.33±0.79 85.92±1.47 90.48±0.49 91.53†
±0.77

RegnetY 90.30±0.81 90.03±0.92 85.23±1.51 91.59†
±0.75 91.41±0.81

Acc@3

ResNet-50 97.64±0.47 97.42±0.70 95.55±0.73 98.08±0.42 98.47†
±0.42

MobileNet-v3 98.00±0.58 98.02±0.49 96.13±0.71 98.56±0.30 98.64†
±0.36

Inception-v4 98.06±0.58 97.98±0.64 96.47±0.63 98.64†
±0.43 98.47±0.48

Efficientnet-b2 97.70±0.57 97.84±0.71 95.72±0.90 98.06±0.54 98.42†
±0.44

RegnetY 97.03±0.64 97.16±0.75 96.59±0.81 97.91±0.46 98.31†
±0.61

Macro-F1

ResNet-50 87.73±1.18 88.67±0.87 83.67±1.58 88.69±0.81 90.23†
±0.67

MobileNet-v3 90.14±1.19 90.67±0.78 85.24±1.03 91.25±0.67 91.55†
±0.69

Inception-v4 89.62±1.24 89.51±1.19 85.38±1.55 91.03±0.73 91.09†
±0.81

Efficientnet-b2 90.55±0.51 90.25±0.79 85.92±1.47 90.31±0.50 91.44†
±0.79

RegnetY 90.20±0.83 89.93±0.94 85.28±1.47 91.48†
±0.77 91.34±0.79

Note: The abbreviations O, G and S are for the Original, Grey and Skeleton views respectively. The 
results along the O column are considered as the baseline that directly trains the base model using 
original images. The top-2 performances along each row are in bold, and the top-1 is also marked 
with †. Each entry describes the mean ± standard deviation obtained from 20 independent runs.

TA B L E  2  The main experimental 
results of O, G, S, OOO and OGS 
implementations over the Huang et 
al. (2023) dataset.
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4  |  DISCUSSION

4.1  |  The proposed three views and OGS method

According to Table 2, OGS generally achieves the best performances 
compared to other methods regarding all the five types of base models 
and all three metrics, and the ensemble OGS consistently outperforms 
the baseline O that trains a single base model. Table 2 also suggests the 

superior or comparable performance of OGS against OOO, that is, the 
data augmented three views would gain more benefits compared to 
the duplicated three views. The reason could owe to the improvement 
of the diversity of the predictions among three base models when the 
data augmented three views are fed to the three base models.

To support this claim, we plot the confusion matrices of the 
Original view, the Grey view, the Skeleton view and the multiview 
ensemble for ResNet-50 as an example, shown in Figure 4. It can be 

F I G U R E  2  The results of Acc@1, Acc@3 and Macro-F1 (from left to right) under various train ratios (0.1–0.8 with step 0.1) for the base 
model ResNet-50 (row 1), Inception-v4 (row 2) and RegNetY (row 3). Best viewed in colours.

F I G U R E  3  The proposed framework versus bagging framework. Regarding the stricter metrics of Acc@1 and Macro-F1, OGS under 
the proposed framework significantly outperforms OOO-bagging under the classical bagging framework for ResNet-50 and Inception-v4. 
However, they obtain comparable performance for Acc@3 and for other base models. Best viewed in colours.
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observed that different prediction patterns are generated by differ-
ent views, with the ensemble model obtaining the optimal perfor-
mance in terms of accuracy (i.e. the sum of the numbers along the 
diagonal being the greatest). For example, the correct predictions of 
Triticites for respective views (O, G and S) are 17, 16 and 13, and the 
proposed framework boosts the performance to 19. This points out 
that the different views bring in inference diversity, and the ensem-
ble procedure is able to revise misidentification by the single model.

The diversity in views leads to their diversity in the extraction of 
fossil structural information. This is especially clear when it comes to 
the subfamily Schwagerininae (see the taxonomy in Table 1) and can 

be confirmed by class activation mapping (CAM). This method weighs 
the sum of the presence of visual patterns at different spatial loca-
tions and underlines the image regions most relevant to a particular 
category (Zhou et al., 2015).

Figure 5 shows the visualization of Grad-CAM (Selvaraju et al., 2016) 
of O, G, and S on images of five individuals from the subfamily Schwa-
gerininae, using timm-vis.8 The first two views, O and G, tend to acti-
vate in the middle of the image, which is the region of the proloculus 
(the very first coiling whorl of fusulinids) and the two to three inner 

 8https://github.com/novic​e03/timm-vis.

F I G U R E  4  The confusion matrix for the Original view, the Grey view, the Skeleton view and the multiview ensembles when the base 
model is ResNet-50. The deeper colour indicates the larger number; the maximum number is 20 (the number of test set images of each 
genus). The number along the diagonal line represents the number of corrected predictions, that is, the predicted label (x-axis) matches 
the actual label (y-axis). Best viewed in colours. Ch, Chusenella; Ep, Eoparafusulina; Es, Eostaffella; Fn, Fusulina; Fl, Fusulinella; Ms, Misellina; 
Nk, Nankinella; Ns, Neoschwagerina; Pr, Parafusulina; Pf, Pseudofusulina; Ps, Pseudoschwagerina; Qs, Quasifusulina; Rg, Rugosofusulina; Sb, 
Schubertella; Sw, Schwagerina; Tr, Triticites.

https://github.com/novice03/timm-vis
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whorls. The S view, on the other hand, is often dispersed and activates 
at the periphery of the fusulinid, which is the whorls grown at the later 
stage. Figure 4 shows that the S view particularly achieves better per-
formance on the two schwagerine groups Pseudofusulina and Schwager-
ina, compared to the other two views (see the 10th and 15th diagonal 
elements of confusion matrices). These two fusulinid genera are mor-
phologically very similar but distinguishable for the ontogenetic devel-
opment process. The proloculus of Pseudofusulina is oftentimes large 
and the succeeding whorls coil very loosely, while the proloculus of 
Schwagerina is often small with the two to three succeeding whorls coil-
ing intensely and gradually loosening outwards. Although the differ-
ences are distinct with regard to their development and fusulinid 
taxonomists agree to put them into two genera (Moore, 1964; Sheng 
et al., 1988), controversies exist in the identification on a case-by-case 
basis (see part 4.3 for a consistency estimation). The skeleton view, as 
seen in the CAM result, may be able to highlight the differences in pro-
loculus and outer whorls and therefore shows more excellence in these 
subtly distinguishable groups. In the case of ensemble learning, multi-
ple views can complement each other by highlighting different fea-
tures. Although the Grad-CAM results may not fully reflect the model's 
‘attention’ distribution, they are a good demonstration of the fact that 
a simple manipulation of fossil images (such as the skeletonization) can 
emphasize unique features of the identical individual for the model, so 
that the ensemble model can synthesize the classification information 
obtained from more aspects and reach the better results.

It might be worth mentioning that this work proposes to utilize 
O, G and S views to form the ensemble, but there could be other pos-
sible views that researchers or engineers can further explore based 
on the characteristics of their fossil images. It is also the case that 
the proposed framework or meta-method can be directly used or 
easily modified for broader fossil or extant organisms image classi-
fication problems.

4.2  |  High applicability to small datasets

In Figure 2, the most significant finding is that as the training ratio of 
labelled images decreases, the proposed framework, especially the 
OGS method, generally receives more performance gains compared to 
simply using one single model. This finding indicates that the proposed 
framework has a substantial application when the labelled data are in-
sufficient. Fossil image data often fit into this category, which is often-
times limited as a result of fossil preservation, sampling intensity and a 
requirement of domain-specific knowledge for fossil image annotation. 
Consequently, lacking labelled training data is a common challenge in 
fossil image identification and hinders the advancement of automatic 
identification methods. The proposed multiview ensemble framework 
is proven to be likely to perform much better than simply applying a 
single model provided insufficient training data, thus showing the 
promise for similar practices on other fossils, especially rare ones.

F I G U R E  5  Examples of original images and corresponding visualization results of activation mapping of the Original view, the Grey 
view and the Skeleton view (left–right), generated by Grad-CAM (Selvaraju et al., 2016). The base model is ResNet-50, consistent with 
the model used in Figure 4. The five input images are from the species of subfamily Schwagerininae including Parafusulina australis, 
Rugosofusulina mansuyi, Pseudofusulina wulungensis, Schwagerina neoaculata and Triticites kawensis (top-down). These images are not to scale. 
The contribution of different regions to identification is indicated by a colour ranging from blue to yellow. The yellow highlighted regions 
contribute the most. Note that the activated regions of the S view are clearly distinct from those of the other two, indicating different 
features detected and analysed. Best viewed in colours.
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To further demonstrate the applicability to small datasets, we 
follow the experimental settings as used in the main experiments9 to 
conduct experiments on a much smaller real-world fossil dataset, 
that is, the Pires de Lima et al. (2020) dataset. This dataset contains 
342 sectioned fusulinid images assigned to eight genera and exhibits 
a significant category imbalance. There are 88 images in the largest 
genera and only 15 in the smallest. Unlike the Huang et al.  (2023) 
dataset, images in this dataset are not segmented, and thus back-
ground is preserved. Also, the colour difference across different 
image sources is more prominent. The experimental results are 
shown in Table 3.

Comparing to the main experiments over the larger dataset 
(Huang et al.,  2023), more considerable improvements of OGS 
against OOO are presented for the experiments over this smaller 
dataset (Pires de Lima et al., 2020) when taking Inception-V4 (+3% for 
ACC@1 and +2.84% for Macro-F1) and RegnetY (+3.78% for ACC@1 
and +4.51% for Macro-F1) as the base in Table 3, though OGS has 
shown considerable improvements when taking ResNet-50 (+1.42% 
for ACC@1 and +1.52% Macro-F1) and Efficientnet-b2 (+1.05% for 
ACC@1 and +1.13% Macro-F1) as the base over the larger dataset 
in Table 2. The reason could be that the larger dataset provides rela-
tively sufficient training data and that the performances are already 
saturated, while the smaller and imbalance dataset (Pires de Lima 
et al., 2020) offers a more challenging classification scenario to re-
veal the superiority of OGS against OOO better. On the other hand, 

it might not be a fair comparison between this work and Pires de 
Lima et al. (2020) work over the same dataset due to the lack of ac-
cess to their model hyperparameters and detailed training schemes. 
Nonetheless, for top-1 accuracy of ResNet-50, the only model used 
in both studies, OGS (85.14%) obtains a significant improvement 
compared with O (81.57%) as well as the model of their work (80%).

The mechanism by which the O, G and S views help the ensem-
ble model obtain the correct identification result is worth exploring. 
Fossils are preserved in sedimentary rocks, and the chemical com-
position of fossils can be greatly affected by the surrounding rocks 
and fluids during taphonomic processes (Behrensmeyer et al., 2000; 
Martin, 1999), and differences in the composition can produce dif-
ferent colours that do not contain information regarding the fossil 
structure itself. Although the colour may somewhat reflect differ-
ences in the living and preservation environments of various classes 
of fossils, the optical microscope used, the filming equipment and 
parameters, and the factors of printing and scanning may also intro-
duce colour-related noise. For the main dataset Huang et al. (2023), 
there is little difference in whether the colour is included or not, 
as the performance of O and G does not show much comparable 
variance (see Table 2). However, for the Pires de Lima et al. (2020) 
dataset as shown in Table 3, the Grey view performs better than the 
Original view for 10 of 15 cases, indicating a performance gain when 
colour noise is erased. As is mentioned, the Pires de Lima et al. (2020) 
dataset contains images of different colour schemes (may corre-
spond to different image sources), while the Huang et al.  (2023) 
dataset is more colour pattern consistent. Removing colour may 
result in greater differences (good or bad) for other potential fossil 
groups and thus requires caution. Conversion to skeletonized images 
is also useful as it helps represent the morphological structure of 

 9The experimental settings for the main experiments on Huang et al. (2023) dataset, and 
this experiments for Pires de Lima et al. (2020) dataset are the same as presented in 
Section 2.4, except for the blocksize hyper-parameter when performing skeletonization. 
The blocksize 41 is used for the Huang et al. (2023) dataset, but 61 is used for the Pires 
de Lima et al. (2020) dataset.

O G S OOO OGS

ACC@1

ResNet-50 81.57±4.67 82.07±3.48 70.64±3.66 85.21†
±3.57 85.14±2.8

MobileNet-v3 83.57±3.57 83.29±4.74 73.57±3.46 87.07±3.45 87.50†
±2.51

Inception-v4 86.29±2.57 86.21±4.32 75.57±3.78 85.79±2.23 88.79†
±3.04

Efficientnet-b2 86.29±3.11 82.57±3.80 69.50±4.34 87.64†
±1.65 87.36±3.04

RegnetY 84.57±2.29 85.14±3.36 73.21±4.33 85.29±1.57 89.07†
±2.57

ACC@3

ResNet-50 96.21±1.77 96.29±1.99 93.71±2.53 97.71±1.46 97.86†
±1.53

MobileNet-v3 97.14±1.56 95.64±2.14 93.00±2.16 98.07†
±1.22 97.43±1.25

Inception-v4 97.71±1.46 98.71±1.10 94.71±2.39 98.29±0.86 99.93†
±0.31

Efficientnet-b2 97.79±1.60 97.93±1.78 90.71±3.27 98.14±1.12 98.50†
±1.46

RegnetY 96.93±1.58 97.36±1.71 93.57±2.24 98.14±1.2 98.50†
±1.24

Macro-F1

ResNet-50 82.24±4.06 83.19±3.71 72.08±4.25 86.09†
±2.83 85.78±2.88

MobileNet-v3 84.05±3.29 84.48±4.91 75.52±3.05 87.17±3.21 88.58†
±2.54

Inception-v4 86.62±1.90 87.08±4.04 78.08±3.37 86.21±1.67 89.05†
±2.93

Efficientnet-b2 86.53±3.44 83.80±3.68 70.46±4.51 87.85±1.56 88.33†
±3.00

RegnetY 84.90±2.14 86.54±3.09 75.21±4.37 85.32±1.52 89.83†
±2.10

TA B L E  3  The experimental results of 
O, G, S, OOO and OGS implementations 
over the Pires de Lima et al. (2020) 
dataset, which has the class imbalanced 
characteristic and is smaller than Huang  
et al. (2023) dataset in Table 2.
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the fossils and thus serves as a feature extraction (Saha et al., 2016; 
Weeks et al., 2023). For shell-forming organisms like fusulinids, the 
topology of their shell, such as the number and size of chambers and 
the manner of spinning and coiling, is sufficient to provide a great 
deal of information for their identification and classification (Ross & 
Ross, 1991; Sheng et al., 1988; Vachard et al., 2010). Skeletonization 
can be seen as a feature extractor based on this prior knowledge to 
help the model learn the morphological features of the fossil.

4.3  |  Identification consistency estimation

Another point to note is the label inconsistency, which may also 
be responsible for the misidentification of the model. This study 
considers supervised classification, that is, each image needs to 
be labelled before training, so whether the labels can consistently 
indicate the features critical for classification will greatly affect 
the model performance. As mentioned earlier, the identification 
or classification of fossil species requires corresponding domain 
knowledge, and different experts use different morphological cri-
teria due to different experience, training, and access to samples 
(Fenton et al., 2018; MacLeod et al., 2007, 2010), which leads to 
inconsistency in the labels they give. This inconsistency can be par-
tially resolved by recalibration by an individual expert. Still, even 
self-consistency (consistency in results obtained from multiple 
practices of identification on the same sample by the same per-
son) of the experts is not necessarily high (Culverhouse et al., 2014; 
Fenton et al.,  2018). In the present study, the main dataset used 
contains images from multiple sources, which may introduce label 
inconsistency despite the fact that the dataset has been subjected 
to some quality control (e.g. preferential use of holo- and paratype 
specimens). A consistency test is performed to explore the nature 
of such consistency within the dataset.

Among the current 16 genera in the Huang et al.  (2023) data-
set, the eight genera from the Family Schwagerinidae are the most 
controversial groups. Inconsistency among certain genera, such as 
Pseudofusulina versus Schwagerina (Shamov, 1958; Shamov & Shcher-
bovich,  1949), Schwagerina versus Chusenella (Stewart,  1963) and 
Pseudofusulina versus Triticites (Shi et al., 2008), largely exist in identi-
fications. Therefore, 160 images of these eight genera were selected 
for the consistency test, with two human experts involved. The orig-
inal identification (which can be seen as the collective ideas of many 
experts, denoted as O-Label), the inference output of OGS and the 
two human expert re-identification results are compared. The consis-
tency rate between two identification results of n images is defined 
as ncon ∕n, where ncon is the number of images for which they present 
consistent labels. Table 4 shows the consistency matrix, where the 
consistency between two experts is the least at merely 53%, while 
OGS reaches the utmost consistency compared to all other inferences 
(85%, 68% and 58%, with O-Label and two experts respectively). This 
suggests that despite the many contradictions in specimen identifica-
tions among experts, the ensemble model still successfully captures 
the common features indicated by their collective ideas to a high 

degree. This shows the potential of using deep learning models to 
bridge contradictory and resolve inconsistency.

If a model has undergone multiple thorough training attempts, its 
performance should provide a quantitative assessment of the data-
set's consistency. Table 5 summarizes such the assessment, where 
three OGS models are trained on the same images, but are provided 
with different labels from the original dataset and the two experts. 
The training and validation process follows fivefold cross-validation, 
that is, all samples are randomly divided into five subsets, and the 
ensemble models are trained over four subsets and validated over 
the remaining one each time until every subset has been used as the 
validation set once. The consistency in Table 5 is indicated using the 
top-1 accuracy (the mean over 10 repeated runs for each fold and 
then over the fivefold) between the predicted labels (by each of the 
three trained OGS model) and the ‘ground truth’ labels (when treat-
ing the labels from original, expert 1 and expert 2 as the ground truth 
respectively); thus rendering nine results. Surprisingly, the original 
labels (representing the collective ideas from multiple experts) reach 
the greatest self-consistency of around 67.88%, surpassing those of 
the two experts, though the confidence intervals may overlap. This 
may partly be due to the fact that the original labels are given by 
experts who have access to the samples, and more information like 
sizes and detailed structures can be acquired by close examination. 
Nevertheless, the relatively low consistency of these schwagerine 
genera points out that the taxonomy and/or classification systems 
are in need of reconsideration and unification.

TA B L E  4  The consistency rates between original labels (O-
Label), identification results obtained by the OGS model and two 
human experts.

O-Label OGS Expert 1 Expert 2

O-Label 1 0.85 0.68 0.57

OGS 1 0.68 0.58

Expert 1 1 0.53

Expert 2 1

Note: The consistency test is performed on the set of eight genera of 
the family Schwagerinidae (Eoparafusulina, Parafusulina, Pseudofusulina, 
Pseudoschwagerina, Quasifusulina, Rugosofusulina, Schwagerina and 
Triticites), with 20 images each. The OGS model is aligned with that of 
Figures 4 and 5.

TA B L E  5  The consistency of the labels given in the original 
dataset (O-Label) and the two experts, indicated by the top-1 
accuracy of OGS ensemble models on validation sets.

Note: The OGS models are trained using the fivefold cross-validation 
process to gain mean accuracy and confidence intervals.

Model trained on

Ground Truth
O-Label Expert 1 Expert 2

O-Label 67.88±4.95 58.19±7.23 52.27±4.12

Expert 1 63.14±5.15 64.22±3.69 49.3±4.25

Expert 2 49.73±6.86 45.24±5.9 59.47±4.53
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On the other hand, we can look into the problem from the 
perspective of different genera. Based on an identification result, 
assuming the sampling of the specimens and the experts are ran-
dom, a label ‘agreement’ expectation, that is, the expectation that 
given a label, an expert agrees to classify the specimen into the 
same or different label, can be calculated (see Supporting Infor-
mation S1 for the computing method). Figure 6 shows the agree-
ment matrix based on the best-performing OGS models trained 
on three sets of labels, including the original, expert 1 and 2 re-
identified labels. The OGS models can be seen as the classification 
systems reflected by the three sets of labels, in which some in-
herent contradictions are bridged in the training process. Echoed 
by the actual expert identification practices, Pseudofusulina and 
Schwagerina hold the worst consistency of around 50%, and they 
are often identified as one another (18%). Other confusions exist 
between Eoparafusulina and Triticites, as well as Rugosofusulina 
and Triticites, both around 12%. Genera other than Pseudofusulina 
and Schwagerina have relatively better consistencies of around 
or over 60%. The consistency of Pseudoschwagerina is the largest 
(79%), probably because it has distinct characters like spherical 
test shape and tight inner whorls (Sheng et al.,  1988), and thus 
suffers less from taxonomic controversies.

This current routine provides an approach to assess the consis-
tency of the labels quantitatively, both across experts and catego-
ries. The results urge that the consistency of fossil identifications 
should be emphasized, and analysis and revision of labels should be 
considered before feeding data for model training. For future work, 
the inconsistency of fusulinids and other fossils can be better es-
timated and resolved by various methods, including expert-guided 
feature extraction of neural networks.

5  |  CONCLUSIONS

Fossil identification is essential for evolutionary studies. Automatic 
identification models, especially recent advances based on deep learn-
ing, rely heavily on the quantity and quality of labelled images to train 
the models. However, the images are particularly limited for palae-
ontologists due to the fossil preservation, conditioned sampling and 
expensive and inconsistent label annotation by domain experts. To ad-
dress these challenges, we proposed a multiview ensemble framework 
that collects the multiple views of each fossil specimen image reflect-
ing its different characteristics to train multiple base models and then 
makes the final decision via soft voting. Regarding the characteristics 
of fossil images, we further proposed the Original, the Grey and the 
Skeleton views to establish the OGS method for identifying fossil im-
ages and conducted a case study on the fusulinid datasets.

The extensive experiments on the Huang et al.  (2023) dataset 
as well as the Pires de Lima et al. (2020) dataset demonstrated the 
superiority of the proposed framework and OGS method from var-
ious aspects. In future work, it is worth investigating adopting het-
erogeneous base models for the proposed framework, employing 
other techniques to combine the outputs of base models, and ex-
perimenting on more fossil datasets. Furthermore, the consistency 
test showed that the proposed method could successfully integrate 
the ideas of multiple experts and reach the greatest consistency. The 
proposed routine using the performance of OGS models trained on 
labels provided by different experts provides an approach to assess 
the consistency of the labels quantitatively, both across experts and 
categories. These additional experiments suggest the potential ap-
plication of the proposed method for assessing and resolving the 
inconsistencies in fossil identification.

F I G U R E  6  The agreement matrix of 
each genus obtained in the consistency 
test of Table 5. Values are the 
expectations of labels (columns) being 
assigned to a specimen by an expert, 
given a prior assignment of labels (rows). 
The diagonal represents the consistency 
of each genus. Ep, Eoparafusulina; Pr, 
Parafusulina; Pf, Pseudofusulina; Ps, 
Pseudoschwagerina; Qs, Quasifusulina; 
Rg, Rugosofusulina; Sw, Schwagerina; Tr, 
Triticites.
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